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s u m m a r y

The variability in the sea surface temperature (SST) in the Pacific Ocean has an influence on the variability
of the continental US precipitation, streamflow and drought. Analysis of the dominant oscillations of
droughts and large-scale climate indices shows that interannual and interdecadal variations related to
climate indices are significant indicators of drought occurrences. Using wavelet transforms and cross-cor-
relations and Kriging, spatial structure of teleconnections of both El Niño Southern oscillation (ENSO) and
Pacific decadal oscillation (PDO) to droughts during the 20th century is investigated, with particular ref-
erence to the state of Texas. Each region in Texas has different responses but arid regions show stronger
correlations to climate anomalies than do sub-tropic humid regions. Lag times and correlation coeffi-
cients between droughts and climate indices are detected. Maps indicating the spatial variations of lag
times and correlation coefficients are presented for annual and decadal scales. The proposed investigation
permits to determine lag times between drought characteristics and climate indices along with signifi-
cant correlations; these features are different from those of existing methods. Decision makers in the field
of water resources management and agriculture can benefit from the evaluation of the ENSO variability
and drought variability.

� 2008 Elsevier B.V. All rights reserved.

Introduction

The association of North American hydrologic droughts and El
Niño Southern oscillation (ENSO) has received significant attention
in recent years (Piechota and Dracup, 1996; Trenberth and
Branstator, 1992; Cole and Cook, 1998). Halpert and Ropelewski
(1992) and Kiladis and Diaz (1989) reported a strong relationship
between ENSO and seasonal mean anomalies of precipitation and
temperature which are considered key factors for the initiation of
a drought. McCabe and Dettinger (1998), Dettinger et al. (1995,
1998), and Cayan et al. (1998) investigated temporal variations
in the ENSO teleconnections to the US climate and they found a
decadal variability in the ENSO teleconnections to western US pre-
cipitation. Cole and Cook (1998) noted changes in the spatiotempo-
ral variability in US summer Palmer drought severity index (PDSI).

Rajagopalan and Cook (2000) investigated the spatial structure
of teleconnections between both the winter ENSO and global sea
surface temperatures (SSTs), and a measure of continental US sum-
mer drought during the 20th century. They concluded that during
the first three decades of this century, summer drought telecon-
nections in response to SST patterns linked to ENSO were the
strongest in the southern region of Texas, with extensions into re-

gions of the Midwest. Barlow et al. (2001) found a significant rela-
tionship between three primary modes of Pacific variability [ENSO,
Pacific decadal oscillation (PDO), and the North Pacific mode
(NPM)] and the US warm season precipitation, drought, and stream
flow. They found that the relationships with drought and stream
flow varied little throughout the season, but the relationship with
precipitation varied substantially from month to month. Barros
and Bowden (2008) proposed an approach to extend the lead time
of operational drought forecasts up to 12 months by considering
ENSO.

Climate anomalies can cause different effects in different re-
gions. Zhang et al. (2007) showed that different phase relations ex-
isted in the lower, the middle and the upper Yangtze River basin in
China. In-phase relations were detected between annual maximum
streamflow of the lower Yangtze River and anti-phase relations
were found in the upper Yangtze River. But ambiguous phase rela-
tions occured in the middle Yangtze River, showing that the middle
Yangtze River basin was a transition zone. Different climate sys-
tems controlled the upper and the lower Yangtze River. Tootle
et al. (2008) evaluated the Pacific and Atlantic Ocean SSTs and
Colombian streamflow to identify coupled regions of SST and
Colombian streamflow variability. They revealed that the warmer
(cooler) equatorial SSTs resulted in lesser (greater) streamflow.
Pongracz et al. (1999) applied fuzzy rule-based modeling to the
prediction of regional droughts using two forcing inputs, ENSO
and large-scale atmospheric circulation patterns. Chiew et al.
(1998) presented an overview of the relationship between ENSO
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and rainfall, drought and streamflow in Australia. They showed
that dry conditions in Australia tend to be associated with El Niño.

Droughts can show a variable pattern at spatial scales depend-
ing on their severity and duration. A consistent response to large-
scale climate patterns can appear in regional drought occurrences.
Recently, there has been considerable interest in the use of climate
indices for long-term forecasts of regional droughts. But there are
still questions as to how SST states affect the spatial structure of
droughts. The variation in the relationship between SST anomalies
and drought indices at annual to decadal timescales is of particular
interest.

In this paper, variability and possible teleconnections between
drought occurrences and large-scale climate indices, such as ENSO
which is here represented by sea surface temperature anomalies
for different regions (NINO 3, NINO 3.4, etc.) in the Pacific Ocean,
and PDO were investigated using continuous wavelet transform
(CWT), cross-correlation and Kriging, and cross wavelet ap-
proaches. The drought occurrences were quantified by the palmer
drought severity index (PDSI). The specific objectives of the study
therefore are: (1) to identify the dominant oscillations of drought
indices and their temporal variations using CWT; (2) to determine
the spatial correlation structure between large-scale climate and
drought indices with the aim at detecting the response of regions
with respect to various large-scale climate anomalies, such as
ENSO and PDO; (3) to relate the drought variability to large-scale
anomalies at annual and decadal scales; and (4) to determine the
phase relations between PDSI and climate anomalies for all climate
divisions in Texas.

Methodology

Spatial structure of teleconnections of both ENSO and PDO to
droughts along with the scale analysis was investigated using
wavelet transforms, correlations and spatial analysis. For this pur-
pose CWT, cross-correlation and Kriging approaches were used,
and a flow chart of methodology is shown in Fig. 1.

Continuous wavelet transform

The continuous wavelet transform (CWT) is used to decompose
a signal into wavelets, small waves that grow and decay over a
small distance, whereas the Fourier transform decomposes a signal
into infinite number of terms of sines and cosines losing most
time-localization information. A continuous wavelet transform of
a signal produces the coefficients at a given scale. Comparison be-
tween Fourier analysis and wavelet analysis is given by Kumar and
Foufoula-Georgiou (1997) who presented only the basics regarding
wavelet analysis. The CWT’s basis functions are scaled and shifted
versions of the time-localized mother wavelet. A Morlet wavelet is
one of the many wavelet functions which has a zero mean and is
localized in both frequency and time. Since the Morlet wavelet pro-
vides a good balance between time and frequency localizations, it
is preferred for application. It can be represented as [Torrence and
Compo, 1998; Torrence and Webster, 1999; Grinsted et al., 2004]

wðgÞ ¼ p�1=4eixg�0:5g2 ð1Þ

where x is the dimensionless frequency, and g is the dimensionless
time parameter. The wavelet is stretched in time (t) by varying its
scale (s), so that g = s/t. When using wavelets for feature extraction
purposes, the Morlet wavelet (with x = 6) is a good choice, since it
satisfies the admissibility condition (Farge, 1992; Torrence and
Compo, 1998).

For a given wavelet w0(g), it was assumed that Xj is a time series
of length N (Xj, i = 1, . . .,N) with equal time spacing dt. The contin-
uous wavelet transform of a discrete sequence Xj is defined as con-
volution of Xj with the scaled and translated wavelet, w0(g):

WX
nðsÞ ¼

XN

j¼1

Xjw
� ðj� nÞdt

s

� �
ð2Þ

where the asterisk indicates the complex conjugate. CWT decom-
poses time series into time–frequency space, enabling the identifi-
cation of both the dominant modes of variability and how those
modes vary with time.

Cross wavelet transform

Torrence and Compo (1998) defined the cross wavelet spectrum
of two time series X and Y with wavelet transform WX

n and WY
n as

WXY
n ðsÞ

��� ��� ¼ WX
n ðsÞ �W

�Y
n ðsÞ

��� ��� ð3Þ

where W�Y
n is the complex conjugate of WY

n . The complex argument
of WXY

n can be interpreted as the local relative phase between time
series Xj and Yj. Statistical significance is estimated against a red
noise model (Torrence and Compo, 1998). Thus cross wavelet trans-
form (XWT) can be constructed from two CWTs. XWT denotes their
common power and relative phase in time-frequency space.

Correlation analysis

Once the CWT coefficients of each variable are obtained, it is
possible to evaluate all scales between two different variables.
Cross-correlation was used to show the relationship between two
variables at different scales. Cross-correlation structure reveals
that the effective scales which exhibit a strong relationship be-
tween two variables and also the corresponding lag time where
the correlation coefficient reaches its maximum value. A sample
cross-correlation function of NINO 3.4 and PDSI for different scales
is shown in Fig. 2. It is seen from this figure that the highest corre-
lation coefficients of 0.7 and 0.8 with lag times greater than 10
months were obtained for the 8 and 16 year scales, respectively.
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Figure 1. Flow chart of proposed approach.
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