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Summary This paper uses generalized expressions for both cross-section geometry and
hydraulics (generalization of the Chézy and Manning relations) to derive explicit equations
for the exponents and coefficients in the power-law at-a-station hydraulic–geometry rela-
tions. The exponents are shown to depend only on the depth exponent in the hydraulic
relation (p) and the exponent that reflects the form of the cross-section (r). The coeffi-
cients depend on p and r, but also on the slope exponent in the generalized hydraulic rela-
tion and on the physical characteristics of the section: bankfull width, bankfull maximum
depth, hydraulic conductance, and slope. The theoretical ranges of coefficient and expo-
nent values derived herein are generally consistent with the averages and individual
observed values reported in previous studies. However, observed values of the exponents
at particular cross-sections commonly fall outside the theoretical ranges. In particular,
the observed value of the velocity exponent m is commonly greater than the theoretical
value, suggesting that hydraulic conductance often increases more strongly with discharge
than predicted by the assumed hydraulic relations. The developments presented here pro-
vide new theoretical insight into the ways in which hydraulic and geometric factors deter-
mine hydraulic geometry. This insight should help to explain the variation of at-a-station
hydraulic geometry and may facilitate prediction of hydraulic geometry at river reaches
where detailed measurements are unavailable.
ª 2006 Elsevier B.V. All rights reserved.

Introduction

The concept of hydraulic geometry was introduced by Leo-
pold and Maddock (1953). The basic at-a-station hydrau-
lic–geometry relations are functions relating the water-

surface width, W, average depth, Y, and average velocity,
U, to discharge, Q, at a particular stream cross-section or
reach. The functions are usually given in the form of
power-law equations:

W ¼ a � Qb; ð1WÞ

Y ¼ c � Qf ; ð1YÞ
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U ¼ k � Qm: ð1UÞ

At-a-station hydraulic–geometry relations are useful tools
in many types of hydrological analysis. They can be used di-
rectly in flood routing (Western et al., 1997; Orlandini and
Rosso, 1998), and can be combined with flow-duration
curves to produce water-resources-index duration curves
that are useful in riverine-habitat analysis (Jowett, 1998),
water-quality management, reservoir-sedimentation stud-
ies, and in determining the frequency of sediment move-
ment (Dingman, 2002). Width–discharge relations can be
used to estimate discharge via remote sensing (Bjerklie
et al., 2005a).

Given the power-law forms of Eq. (1), the continuity
relation,

Q ¼ W � Y � U; ð2Þ

dictates that

a � c � k ¼ 1 ð3Þ

and

bþ f þm ¼ 1: ð4Þ

It is important to note that at-a-station hydraulic–geometry
relations as commonly applied are valid only for in-bank
flows. Garbrecht (1990) expanded the concept by showing
that two empirical power functions could be connected to
apply to in-bank and over-bank flows at a given section.
However, the discussion here is limited to in-bank flows.

Eq. (1) each plot as straight lines on double-logarithmic
graph paper. The values of the coefficients (antilogs of
the intercepts) and exponents (slopes) of these relations
at a given cross-section are usually determined empirically
by ordinary least-squares regression analysis on the loga-
rithms of values of W, Y, U, and Q collected during dis-
charge measurements at the section.

Ferguson (1986) reviewed empirical studies of at-a-sta-
tion hydraulic geometry and theoretical attempts to explain
why the exponents tend toward particular central values
(though with much variability) and relative values (e.g.,
b < f). His main conclusion was that, given a cross-section
with a specified constant shape and frictional characteris-
tics and a law relating average velocity to friction and
depth, the within-bank at-a-station hydraulic–geometry
relations are determined. Thus he rejected theoretical ap-
proaches to determining the exponents in Eqs. (1W)–(1U)
that invoke a ‘‘metaphysical’’ explanation, such as an as-
sumed tendency toward ‘‘minimum variance’’ (Langbein,
1964).

Ferguson (1986) also showed that the W(Q), Y(Q), and
U(Q) relations will be power-laws only if the W(Y) and
U(Y) relations are power-laws, such as the commonly used
Manning and Chézy relations:

Manning : U ¼ uM

n
� Y2=3 � S1=2; ð5Þ

Ch�ezy : U ¼ uC � C � Y1=2 � S1=2; ð6Þ

where uM and uC are unit-conversion factors (for SI units
uM = 1, uC = 0.552; for British units uM = 1.49, uC = 1), n is
Manning’s resistance coefficient, S is water-surface slope,
C is Chézy’s conductance coefficient, and Y is assumed to
differ negligibly from the hydraulic radius, R (i.e., W/
Y > 10). Applying the Manning equation to a parabolic chan-
nel, a form commonly assumed to be approximated by nat-
ural river cross-sections, Ferguson (1986) found that
b = 0.23, f = 0.46, and m = 0.31, ‘‘strikingly close’’ to the
central values of empirical values reported in the literature.
He also noted that almost no attention has been given to the
factors that determine the coefficients a, c, and k.

Ferguson’s (1986) conclusion that at-a-station hydraulic
geometry is completely determined by cross-section geom-

Nomenclature

[1] denotes dimensionless quantities
a coefficient in width–discharge relation

[L1�3Æb Tb]
b exponent in width–discharge relation [1]
c coefficient in depth–discharge relation

[L1�3Æf Tf]
C Chézy’s conductance coefficient [1]
f exponent in depth–discharge relation [1]
g gravitational acceleration [L T�2]
h exponent in power-law velocity profile [1]
k coefficient in velocity–discharge relation

[L1�3Æm]
K generalized conductance coefficient [L1�p T�1]
m exponent in velocity–discharge relation [1]
n Manning’s resistance coefficient [1]
p depth exponent in generalized hydraulic relation

[1]
q slope exponent in generalized hydraulic relation

[1]
Q discharge [L3 T�1]
r exponent in cross-section geometry relation [1]

R hydraulic radius [L]
S energy slope [1]
uC unit-conversion factor in Chézy relation

[L1/2 T�1]
uM unit-conversion factor in Manning relation

[L1/3 T�1]
U average cross-sectional velocity [L T�1]
W water-surface width [L]
W* bankfull water-surface width [L]
x cross-channel distance from channel center [L]
yr effective height of bottom roughness elements

[L]
Y cross-sectional average water depth [L]
Y* bankfull cross-sectional average water depth

[L]
Ym maximum water depth in cross-section [L]
Y �m bankfull maximum water depth in cross-section

[L]
z vertical distance of channel bottom above low-

est (central) point [L]
d �1 + r + r Æp [1]
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