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Summary Joint distributions of rainfall intensity and depth, rainfall intensity and duration, or
rainfall depth and duration are important in hydrologic design and floodplain management. Mul-
tivariate rainfall frequency distributions have usually been derived using one of three fundamen-
tal assumptions: (1) Either rainfall variables (e.g., intensity, depth, and duration) have each the
same type of the marginal probability distribution, (2) the variables have been assumed to have
joint normal distribution or have been transformed and assumed to have joint normal distribu-
tion, or (3) they have been assumed independent-a trivial case. In reality, however, rainfall vari-
ables are dependent, do not follow, in general, the normal distribution, and do not have the
same type of marginal distributions. This study aims at deriving bivariate rainfall frequency dis-
tributions using the copula method in which four Archimedean copulas were examined and com-
pared. The advantage of the copula method is that no assumption is needed for the rainfall
variables to be independent or normal or have the same type of marginal distributions. The
bivariate distributions are then employed to determine joint and conditional return periods,
and are tested using rainfall data from the Amite River basin in Louisiana, United States.
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Introduction

Many water resources projects require joint probability dis-
tributions of rainfall variables (i.e., rainfall intensity,
depth, and duration) which may or may not be correlated.
Cordova and Rodriguez-Iturbe (1985) found that the correla-
tion structure of rainfall intensity and duration had a signif-

icant effect on surface runoff. Hashino (1985) generalized
the Freund bivariate exponential distribution (Freund,
1961) to represent the joint probability distribution of rain-
fall intensity and maximum storm surge in Osaka Bay, Ja-
pan. Singh and Singh (1991) derived a bivariate probability
density function with exponential marginals to describe
the joint distribution of rainfall intensity and depth. Repre-
senting rainfall occurrence by a Poisson model, Bacchi et al.
(1994) derived bivariate distributions with marginal expo-
nential distributions for rainfall intensity and duration (Long
and Krzysztofowicz, 1992, 1995).
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Overcoming the shortcomings of a previously derived
flood frequency distribution (DFFD) model in which rainfall
intensity and duration were considered independent of each
other, Kurothe et al. (1997) improved the DFFD model for
negatively correlated rainfall intensity and duration. The re-
sults obtained on the Davidson watershed in North Carolina
showed that the negative correlation structure of rainfall
intensity and duration markedly influenced the estimated
flood quantiles. Goel et al. (2000) extended their work on
the DFFD model by including both the positive and negative
correlation structures of rainfall intensity and duration.
Their results from four Indian watersheds and 1 US wa-
tershed showed the importance of both positive and nega-
tive correlation structure on the performance of the DFFD
model. Yue (2000a) applied a bivariate normal distribution
to represent the joint distribution of peak rainfall intensity
and depth which were correlated with each other; the Box–
Cox transformation was used to normalize the original mar-
ginals. Yue (2000b,c, 1999) applied bivariate lognormal,
Gumbel mixed and Gumbel logistic distributions for multi-
variate rainfall frequency analysis.

In above studies, one of two fundamental assumptions
has been made. Either rainfall variables each have the same
type of marginal probability distribution or the variables
have been assumed to have the normal distribution or have
been transformed to have the normal distribution. In prac-
tice, however, rainfall variables may have different distri-
butions. Relaxing these assumptions, Long and
Krzysztofowicz (1992) studied the Farlie–Gumbel–Morgen-
stern and Farlie polynomial bivariate probability density
functions which are independent of marginals. They dis-
cussed both the limitations and advantages of these two
bivariate densities in multivariate hydrological frequency

analysis. In another study, Long and Krzysztofowicz (1995)
constructed bivariate probability density functions as
h(x,y) = f(x)g(y)[1 + hc(F(x),G(y))] where c[F(x),G(y)] char-
acterizes the covariance structure, F(x)is the marginal dis-
tribution of X and G(y) is the marginal distribution of Y.
They discussed that the covariance characteristic c can de-
scribe either positive or negative dependence up to Fréchet
bounds, and the mutual regression dependence of X and Y. A
major advantage is that within certain constraints the shape
of the bivariate density and the degree of association be-
tween X and Y can be controlled.

Kelly and Krzysztofowicz (1995) applied the meta-Gauss-
ian distribution in hydrology. This distribution uses the bivar-
iate normal copula and it differs from the bivariate normal
distribution in that it relaxes the normality assumption of
original variates, avows for nonlinear and heteroscedastic
dependence between the variates, and can represent any
degree of dependence between the variates. Their work
probably was among the first, considering different marginal
distributions with different covariance structures in bivari-
ate frequency analysis. Herr and Krzysztofowicz (2005) de-
rived a generic form of a bivariate probability distribution,
using the meta-Gaussian distribution, for precipitation
amounts, fully characterizing the stochastic dependence be-
tween precipitation amounts at two stations. They discussed
its estimation from data at length.

Salvadori and De Michele (2004) presented theoretical
aspects of frequency analysis based on copulas. They also
presented case studies to illustrate the power of the cop-
ula-based analysis. Favre et al. (2004) developed a method-
ology for modeling extreme values using copulas. Elliptic
and Archimedean copulas and copulas with quadratic sec-
tion were tested on peak flows from a watershed in Quebec,

Notations

CU1jU2¼u2ðu1Þ conditional joint copula (probability) func-
tion given U2 = u2

CU1jU26u2ðu1Þ conditional joint copula (probability) func-
tion given U2 6 u2

CðFX1
ðx1Þ; . . . ; FXnðxnÞÞ multivariate copula function of n

dependent variables
D( Æ ) Debye function
FX(x), FY(y) cumulative probability function of variable X

and Y
fX(x), fY(y): probability density function of variable X

and Y
H(x,y) joint cumulative probability function of two

dependent variables X and Y
h(x,y) joint probability density function of two depen-

dent variables x and y
HXjY(xjy) conditional joint cumulative probability of

X P x given Y = y
H0Xj YðxjyÞ conditional joint cumulative probability of

X P x given Y 6 y
H(x1, xn, x3, . . ., xn) multivariate distribution function of

n dependent variables
TX,Y(x,y) joint return period represents either x or y or

both x and y values are exceeded
TX(x) return period of variable x

TY(y) return period of variable y
TXjY(xjy) conditional joint return period of X P x given

Y = y
R, V, D represents: rainfall intensity, depth and dura-

tion, respectively
ui uniform distributed random variables on [0,1]
xc computed value
x0 observed value
h copula parameter
/ copula generator
s Kendall’s tau correlation coefficient

For Gamma distribution
a, b parameters of gamma distribution

For Weibull distribution
c, b parameters of Weibull distribution.

For exponential distribution
k parameter of exponential distribution.

For lognormal distribution
l, r parameters of lognormal distribution.
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