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Summary Bayesian inference of posterior parameter distributions has become widely used in
hydrological modeling to estimate the associated modeling uncertainty. The classical underly-
ing statistical model assumes a Gaussian modeling error with zero mean and a given variance.
For hydrological modeling residuals, this assumption however rarely holds; the present paper
proposes the use of a mixture of normal distributions as a simple solution to overcome this
problem in parameter inference studies. The hydrological and the statistical model parameters
are inferred using a Markov chain Monte Carlo method known as the Metropolis–Hastings algo-
rithm. The proposed methodology is illustrated for a rainfall-runoff model applied to a highly
glacierized alpine catchment. The associated total modeling error is modeled using a mixture
of two normal distributions, the mixture components referring respectively to the low and the
high flow discharge regime. The obtained results show that the use of a finite mixture model
constitutes a promising solution to model hydrological modeling errors in parameter inference
studies and could give additional insights into the model behavior.
ª 2006 Elsevier B.V. All rights reserved.
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Introduction

The quantification of hydrological modeling uncertainties is
currently one of the key issues of hydrological research.

Especially in the area of conceptual modeling, the uncer-
tainty inherent to any types of prediction is receiving
increasing interest. Conceptual models represent a highly
simplified description of the natural phenomena underlying
a hydrological response. Some of their model parameters
can therefore not be measured directly but have to be cal-
ibrated using observed data of the simulated catchment re-
sponse. In the past, the determination of the best or the
most probable parameter set has been subjected to intense
research (e.g., Duan et al., 1992) whereas current research
concentrates on the estimation of the posterior parameter
distribution (e. g., Kuczera and Parent, 1998; Vrugt et al.,
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2003). Monte Carlo methods have become widely used for
the Bayesian inference of posterior parameter distribu-
tions, the most known in the area of hydrological modeling
being the so-called GLUE method (Generalized Likelihood
Uncertainty Estimation) (Beven and Binley, 1992) – an impor-
tance sampling technique – and different types of Markov
Chain Monte Carlo (MCMC) sampling techniques, the most
frequently used in hydrological modeling being the so-called
Metropolis algorithm (Metropolis et al., 1953).

The Bayesian inference of posterior parameter distribu-
tions requires the definition of an appropriate statistical
model for the model error distribution to formulate the cor-
responding likelihood function. In conceptual hydrological
modeling, the classical normality assumption is generally
not respected, as the modeling residuals are typically not
homoscedastic: On one hand, the data that serves to drive
and calibrate the model is affected by non-stationary and
heteroscedastic errors (e.g., Sorooshian and Dracup, 1980;
Vrugt et al., 2005); on the other hand, the errors due to
the imperfection of the hydrological model depend on the
active components of the model that in turn depend on
the input, the system state and the dominating processes
at a given time step (e.g., Kavetski et al., 2003; Krzysztofo-
wicz and Herr, 2001).

The potentially non-Gaussian nature of modeling residu-
als and especially their heteroscedasticity is frequently
mentioned in model calibration studies but comparatively
seldom explicitly assessed (see, e.g., Bates and Campbell,
2001; Xu, 2001). The assumption of zero expectation is
tested in most studies and it is generally well respected
by the residuals of calibrated hydrological models; the
assumptions of independent and homoscedastic residuals
is however frequently violated (see, e.g., Bates and Camp-
bell, 2001; Xu, 2001, and our case study results). The first
problem is generally tackled through the introduction of
an autocorrelation term in the error model (e.g., Sorooshian
and Dracup, 1980).

A popular approach to reduce the heteroscedasticity of
the residuals of hydrological models is data transformation
(see, e.g., Bates and Campbell, 2001; Thyer et al., 2002;
Vrugt et al., 2003). Krzysztofowicz and Herr (2001) apply
a normal quantile transform and in addition, condition in
their meta-Gaussian model the hydrologic uncertainty on
the occurrence or non-occurrence of precipitation. The
application of data transformations to make residuals
homoscedastic is interesting from a statistical point of view
(see, e.g., Box and Cox, 1964), simple to implement and can
give good results in hydrological modeling (see, e.g., Bates
and Campbell, 2001; Sorooshian and Dracup, 1980; Thie-
mann et al., 2001). We would however like to point out here
that in the context of parameter inference and model
uncertainty estimation, the use of transformed data can
be questionable and a problem can arise: If we estimate
the model parameters in a transformed output variable
space assuming that in the transformed space the modeling
error has zero mean, the modeling error will not necessarily
have a zero mean in the retransformed variable space.

While this result is obvious from a statistical viewpoint
and sometimes mentioned in the context of hydrological
modeling (see, e.g., Koch and Smillie, 1986; Lane, 1975)
we could not find any study that discusses the implications
of this problem for hydrologic parameter calibration stud-

ies: If the retransformed output variable is used as an input
into a further model, part of the input into this model has no
hydrological origin but is induced by the modeling error
assumption in the transformed data space used for parame-
ter inference. If we model for example discharge for a
water management model, this means that part of the
water input into the management model is not the result
of precipitation – runoff transformation but stems from
not explicitly assessed sources (the modeling error). In
applications where the estimation of the posterior distribu-
tion of the hydrological response is the endpoint of the
study, this fact can be neglected and is probably therefore
rarely mentioned.

A detailed discussion of the implications of data transfor-
mation for hydrological model calibration studies is beyond
the context of the present paper. But the highlighted poten-
tial pitfall led us to the development of a model error that
explicitly excludes data transformation to address the cor-
relation and the heteroscedasticity of the residuals. The er-
ror model presented here uses a simple parametric method,
a so-called finite mixture distribution that approaches
highly complex distributions through a weighted sum of
standard distributions such as the normal distribution (see
the work of Bardsley, 2003 or Krzysztofowicz and Herr,
2001 and Maranzano and Krzysztofowicz, 2004 for an appli-
cation in hydrological modeling).

In our application to a precipitation – runoff model, we
use a mixture of normal distributions and fix the number of
mixture components to two, corresponding respectively to
the high flow and the low flow period. This empirical choice
is based on a priori information (see case study section)
about the sources and behavior of the modeling errors.
The parameters of the mixture distribution (and the two
normal distributions composing it) are estimated along with
the hydrological model parameters through a Metropolis–
Hastings algorithm (Hastings, 1970). The properties of the
so inferred error distributions – namely the properties of
the two normal distributions and the differences between
them – can give valuable insights into the model behavior
and into its ability to simulate the runoff processes during
the two flow periods (see discussion section).

We first present the general formulation of the finite
mixture error model, followed by a short overview of the
used Metropolis–Hastings algorithm and a short discussion
of some relevant implementation aspects. The statistical
model and the inference of its parameters are illustrated
for a case study in the Swiss Alps. The obtained results show
that the use of a finite mixture model constitutes a promis-
ing solution to model errors and to estimate the total mod-
eling uncertainty in hydrological model calibration studies.

Finite mixture error model

In parameter inference studies, the catchment response
simulated through a hydrological model is generally repre-
sented as a non-linear regression of the following form
(e.g., Sorooshian and Dracup, 1980; Thiemann et al., 2001):

qt ¼ hðxt; bÞ þ dt ð1Þ

where qt is the observed hydrological response on time step
t (t = 1, . . . ,n), h(xt,b) is the hydrological transfer function
mapping the inputs xt (containing input variables such as
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