
FRASH: A framework to test algorithms of similarity hashing

Frank Breitinger*,1, Georgios Stivaktakis 1, Harald Baier 1

da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Haardtring 100, 64295 Darmstadt, Germany

Keywords:
Digital forensics
Similarity hashing
Test framework
ssdeep
sdhash

a b s t r a c t

Automated input identification is a very challenging, but also important task. Within
computer forensics this reduces the amount of data an investigator has to look at by hand.
Besides identifying exact duplicates, which is mostly solved using cryptographic hash
functions, it is necessary to cope with similar inputs (e.g., different versions of a file),
embedded objects (e.g., a JPG within a Word document), and fragments (e.g., network
packets), too. Over the recent years a couple of different similarity hashing algorithms
were published. However, due to the absence of a definition and a test framework, it is
hardly possible to evaluate and compare these approaches to establish them in the
community.
The paper at hand aims at providing an assessment methodology and a sample imple-
mentation called FRASH: a framework to test algorithms of similarity hashing. First, we
describe common use cases of a similarity hashing algorithm to motivate our two test
classes efficiency and sensitivity & robustness. Next, our open and freely available frame-
work is briefly described. Finally, we apply FRASH to the well-known similarity hashing
approaches ssdeep and sdhash to show their strengths and weaknesses.
ª 2013 Frank Breitinger, Georgios Stivaktakis and Harald Baier. Published by Elsevier Ltd.

All rights reserved.

1. Introduction

The handling of terabytes of data is a major challenge in
today’s IT forensic investigations. It is important to auto-
matically reduce the amount of data that needs to be
inspected manually by either removing non-relevant ob-
jects like operating system files ormarking suspect files like
company secrets or child pornography.

Identifying exact duplicates is often solved using
cryptographic hash functions. However, it is also helpful
to have more flexible and robust algorithms that allow
similarity detection (e.g., different versions of a file),
embedded object detection (e.g., JPG in a Word document),
fragment detection (e.g., analyzing a device on the byte

level or network packages) or clustering files (e.g., e-mails
and Word documents with similar content).

As a consequence the community came up with simi-
larity hashing, which either operates on the byte level or on
the semantic level (e.g., to decide about the similar
perception of pictures). Both levels feature their respective
strengths and weaknesses. For instance, in the former case
an active adversary can circumvent detection by changing
the format of a multimedia file or zip it. However, byte level
approaches offer fragment and embedded object detection.

In the following we focus on byte level similarity and
thus two inputs are equal/similar if they share common
byte sequences. This topic has become more and more
visible in the community, e.g., Garfinkel (2010) addresses
this as one of the candidates to solve the signature metrics
abstraction problem.

In general establishing a new algorithm requires a thor-
ough assessment by the community on base of well-known
criteria. For instance, the US National Institute of Standards
and Technology (NIST) governed the process to standardize

* Corresponding author.
E-mail addresses: frank.breitinger@cased.de (F. Breitinger), georgios.

stivaktakis@cased.de (G. Stivaktakis), harald.baier@cased.de (H. Baier).
1 URL: dasec.h-da.de (Frank Breitinger, Georgios Stivaktakis and Harald

Baier).

Contents lists available at SciVerse ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

1742-2876/$ – see front matter ª 2013 Frank Breitinger, Georgios Stivaktakis and Harald Baier. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.diin.2013.06.006

Digital Investigation 10 (2013) S50–S58

mailto:frank.breitinger@cased.de
mailto:georgios.stivaktakis@cased.de
mailto:georgios.stivaktakis@cased.de
mailto:harald.baier@cased.de
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.diin.2013.06.006&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.06.006
http://dx.doi.org/10.1016/j.diin.2013.06.006

the new symmetric block cipher AES (Nechvatal et al., 2000)
or the cryptographic hash function SHA-3 Keccak (Bertoni
et al., 2009). Hence, similarity hashing will only be
accepted byboth the scientific communityandpractitioners
if an assessment methodology and a test framework are
available (Garfinkel, 2010; Dewald and Freiling, 2012).

Our contribution within this paper is to provide a test
framework, which evaluates existing similarity hashing al-
gorithms.We call it FRASH: a FRamework to test Algorithms
of Similarity Hashing. FRASH is open source and freely
available online.2 On the one hand FRASH is inspired by
previous work on ‘eligible properties’ of similarity hashing
algorithms (Breitinger and Baier, 2012d). On the other hand
we analyzed multiple papers and how the authors evaluate
and compare similarity hashing, e.g., Roussev (2011);
Sadowski and Levin (2007); Tridgell (2002–2009). The
result of our analysis yields several test cases, which we
group in two classes: efficiency and sensitivity & robustness.

The first class measures the runtime efficiency and the
compression rate of the algorithms. Efficiency is important
for practical reasons as the computation and storage
amount must meet practical needs. The second class ad-
dresses sensitivity & robustness issues like random-noise-
resistance, alignment robustness, fragment detection, and
file correlation. FRASH assesses a similarity hashing algo-
rithm and uncovers its strengths andweaknesses in normal
operation and when under attack, respectively.

Currently ssdeep and sdhash are the best-known algo-
rithms. We therefore make use of FRASH to assess them.
Our results show that sdhash is superior to ssdeep in all
categories except for compression.

The rest of the paper is organized as follows: In Section 2
we discuss the state of the art and relevant literature. In
addition, we explain multiple similarity hashing functions
and their usage in digital forensics. The scope of FRASH is
explained in Section 3. Section 4 provides details about the
implementation itself, which is followed by some experi-
mental results in Section 5. Finally, we conclude the paper
and point to future work in Section 6.

2. Background

Nowadays a popular use case of cryptographic hash
functions within computer forensics is detecting known
inputs. The proceeding is quite simple: hash all files on a
storage medium and compare the hashes to a reference
database. In case of a match, the investigator is convinced
that the referred file actually is on the device. The most
famous database is the National Software Reference Library
(NSRL, NIST Information Technology Laboratory (2003–
2013)) with its Reference Data Set (RDS).3 However, due
to their security requirements crypto hashes only allow
yes-or-no decisions, whereas similarity hashing compari-
son outputs a match score between 0 and 100.

Identifying similarity has a long history and may start
with the Jaccard index suggested by Jaccard (1901) that

calculates the similarity of two finite sets A and B by
JðA;BÞ ¼ jAXBj

jAWBj. A common application of the Jaccard index
is plagiarism detection. Two strings are decomposed (e.g.,
by spaces or by n-grams) into tokens, which are the ele-
ments of the respective sets A and B. Then J(A,B) is used to
identify the similarity of the two input strings. However,
the sets have to be kept in memory to compute J(A,B),
which may be very space consuming. For instance, assume
that we split the long byte sequences into 4-g. In the worst
case we then have to keep 24$8 ¼ 232 different 4-g in
memory, i.e., 16 GiB.

Manber (1994) presented the sif tool to quantify simi-
larities among text files. “Files are considered similar if they
have a significant number of common pieces, even if
they are very different otherwise.” Manber uses a set of
anchors, which are short character sequences. In order to
test for similarity sif searches for anchors and considers the
neighborhood, e.g., the next 50 characters. As comparing
strings directly is time consumingManber integrated Rabin
fingerprinting (Rabin, 1981) to hash the substrings. Then it
is possible to compare numeric values. Themain problem is
that training data is needed in order to identify reasonable
anchors. As a consequence text files of different languages
may not be comparable as they do not contain anchors.

In recent years similarity hashing has become more and
more popular and thus newapproaches were published. All
approaches share two commonalities as they consist of

� a generation function that outputs a fingerprint/hash
value/digest and

� a comparison function that measures the similarity of
two fingerprints.

For the remainder of this paper we use the terms simi-
larity hashing and comparison function, respectively.

Although FRASH will only be applied to ssdeep and
sdhash, the following subsections briefly describe pub-
lished similarity hashing algorithms and explain, where the
algorithms succeed and where they fail in normal opera-
tion and when under attack. We decided to mention all
algorithms for two reasons. First, this paper should give a
rough overview of existing algorithms and how they pro-
ceed. Second, the papers describing the algorithms contain
valuable test information and point to the authors’ con-
cerns. Readers familiar with the existing approaches may
skip the remainder of Section 2.

2.1. Context triggered piecewise hashing

Similar to sif, Kornblum (2006) presented an algorithm
known as context triggered piecewise hashing (abbrevi-
ated CTPH) that is based on the spam detection algorithm
of Tridgell (2002–2009). The implementation is freely
available and currently in version ssdeep 2.94.

The overall idea of ssdeep is quite simple. CTPH iden-
tifies trigger points to divide a given byte sequence into
chunks. In order to generate a final fingerprint all chunks
are hashed using FNV (Noll, 1994–2012) and concatenated.

2 https://www.dasec.h-da.de/staff/breitinger-frank/#downloads; (last
accessed 2013–04–11).

3 http://www.nsrl.nist.gov; (last accessed 2013–04–11). 4 http://ssdeep.sourceforge.net; (last accessed 2013–04–11).

F. Breitinger et al. / Digital Investigation 10 (2013) S50–S58 S51

http://https//www.dasec.h-da.de/staff/breitinger-frank/
http://www.nsrl.nist.gov/
http://ssdeep.sourceforge.net/

Download English Version:

https://daneshyari.com/en/article/458127

Download Persian Version:

https://daneshyari.com/article/458127

Daneshyari.com

https://daneshyari.com/en/article/458127
https://daneshyari.com/article/458127
https://daneshyari.com

