
Forensic discovery auditing of digital evidence containers

Golden G. Richard III*, Vassil Roussev, Lodovico Marziale

Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA

a r t i c l e i n f o

Article history:

Received 13 February 2007

Accepted 2 April 2007

Keywords:

Digital forensics

Operating systems internals

Filesystems

Digital evidence containers

Auditing

a b s t r a c t

Current digital forensics methods capture, preserve, and analyze digital evidence in general-

purpose electroniccontainers (typically, plainfiles) with no dedicated support tohelp establish

that the evidence has been properly handled. Auditing of a digital investigation, from identifi-

cation and seizure of evidence through duplication and investigation is, essentially, ad hoc,

recorded in separate log files or in an investigator’s case notebook. Auditing performed in this

fashion is bound to be incomplete, because different tools provide widely disparate amounts

of auditing information – including none at all – and there is ample room for human error.

The latter is a particularly pressing concern given the fast growth of the size of forensic targets.

Recently, there has been a serious community effort to develop an open standard for spe-

cialized digital evidence containers (DECs). A DEC differs from a general purpose container

in that, in addition to the actual evidence, it bundles arbitrary metadata associated with it,

such as logs and notes, and provides the basic means to detect evidence-tampering through

digital signatures. Current approaches consist of defining a container format and providing

a specialized library that can be used to manipulate it. While a big step in the right direction,

this approach has some non-trivial shortcomings – it requires the retooling of existing foren-

sic software and, thereby, limits the number of tools available to the investigator. More

importantly, however, it does not provide a complete solution since it only records snapshots

of the state of the DEC without being able to provide a trusted log of all data operations actually

performed on the evidence. Without a trusted log the question of whether a tool worked

exactly as advertised cannot be answered with certainty, which opens the door to challenges

(both legitimate and frivolous) of the results.

In this paper, we propose a complementary mechanism, called the Forensic Discovery Audit-

ing Module (FDAM), aimed at closing this loophole in the discovery process. FDAM can be

thought of as a ‘clean-room’ environment for the manipulation of digital evidence, where

evidence from containers is placed for controlled manipulation. It functions as an operat-

ing system component, which monitors and logs all access to the evidence and enforces

policy restrictions. This allows the immediate, safe, and verifiable use of any tool deemed

necessary by the examiner. In addition, the module can provide transparent support for

multiple DEC formats, thereby greatly simplifying the adoption of open standards.

ª 2007 Published by Elsevier Ltd.

1. Introduction

Information discovered during an investigative inquiry be-

comes usable evidence only when it passes the rigorous test

of admissability. One of the crucial aspects of arguing admiss-

ability is demonstrating that the information has been

obtained and handled properly and, therefore, the obtained

results can be trusted. In traditional forensics, where physical

* Corresponding author. Tel.: þ1 504 957 5814.
E-mail addresses: golden@cs.uno.edu (G.G. Richard III), vassil@cs.uno.edu (V. Roussev), lmarzial@cs.uno.edu (L. Marziale).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

1742-2876/$ – see front matter ª 2007 Published by Elsevier Ltd.
doi:10.1016/j.diin.2007.04.002

d i g i t a l i n v e s t i g a t i o n 4 (2 0 0 7) 8 8 – 9 7

mailto:lmarzial@cs.uno.edu
http://www.elsevier.com/locate/diin
golden@cs.uno.edu
vassil@cs.uno.edu

artifacts are examined and interpreted, sealed evidence bags

are a simple but indispensible tool in making that argument.

In addition to tamper-evident design, such bags often provide

writing space for identifying information, such as the name of

the investigating officer, case identifiers, the suspect’s name,

a description of the item, and the date and time when the

bag was sealed. Continuity sections on the bag allow tracking

the movement of the bag, noting the chain of custodians who

have undertaken the bag’s care.

Digital forensic examiners have generally followed a simi-

lar approach, with one notable exception – so far they lack the

equivalent of a tamper-evident bag for digital information.

Currently, the state of the art digital forensic tools operate

over standard operating systems’ components and use plain

files as containers for holding artifacts. One of the problems

is that general-purpose tools used during the forensic process

might potentially alter the artifact. Although this can be pre-

vented by a write blocker, the issue of documenting which

operations the tool performed remains unanswered. For

example, if a tool was used to search for malware, was the

whole disk searched, or just selected ‘typical’ places? To deal

(in part) with this problem, best practices dictate that all

work be performed on a copy of the evidence and all opera-

tions performed be recorded in an audit log. For the purposes

of this article, we refer to the process of keeping a log of all

operations on the evidence as auditing.

Under current methodology, which places the burden

entirely on the human investigator, auditing is bound to be

incomplete, because different tools provide varying levels of

auditing information (in a variety of formats), much of which

must be recorded manually. Over the course of an investiga-

tion, a piece of digital evidence may be touched by many

different tools, some of which generate no audit trail of their

actions (e.g., dd or the command line tools of the Sleuthkit)

and some that generate their own audit logs (e.g., FTK). At

the end, an investigator is left to piece together these

bits of audit trail to create a comprehensive view of what

occurred during the investigation. Another potential issue

with application-generated logs is that the application is

charged with policing itself, which makes the possibility of

both the application and its log being faulty much more likely

than if they were developed separately. Finally, as a practical

concern, failure to manually record a bit of auditing informa-

tion, such as the MD5 hash generated by md5sum for a large

disk image, could potentially result in a huge amount of

lost time if the operation must be repeated. If generation of

auditing details such as these is automated, so much the

better.

Anecdotal evidence suggests that many examiners try to

circumvent the above problem by using only the results pro-

duced by commercial tools of vendors prepared to vigorously

defend their product in court (at own expense). There are at

least two major problems with this approach. The first one

is that investigators are limited to the capabilities of the

chosen tools. In general, there is hardly anything special

about the functions found in most forensic tool suites –

almost all of these are based on functions existent in

general-purpose tools (e.g., data transfer, text searches, file

type identification, etc.) and, over time, forensic tools

simply accumulate more of them in a convenient package.

Nonetheless, there will always be a need to use other tools

to discover and interpret evidence.

Another issue is that, just like any other piece of software,

forensic tools invariably contain implementation errors (bugs)

or are based on unsound assumptions. As a simple example,

earlier versions of many tools could be fooled into believing

that a text file was a Microsoft Windows executable by starting

the file with the string ‘MZ’. It is not always the vendor’s fault –

artifacts created in proprietary formats (e.g., many formats in

Microsoft Windows) can change with no warning from version

to version. While discovered bugs and shortcomings tend to be

fixed, the continuous introduction of new tool features brings

new potential problems. For example, recent trends towards

multi-threading bring into the picture a whole new class of

potential implementation problems related to synchronization

that do not exist in a single-threaded implementation.

In short, both investigators and the tools they use are prone

to errors and this can lead to challenges (both legitimate and

frivolous) of the results. Since the possibility of error will never

go away and is inherently difficult to quantify, the only prac-

tical way to genuinely improve the trustworthiness of the

process is to have an independent auditing facility that is:

(a) automated, to guard against human lapses and (b) tool-

independent, to independently confirm/challenge the results

of any tool used, including ones not specifically labeled

‘forensic’.

We should emphasize that such an independent auditing

facility is not charged with duplicating the forensic functions

of any tool but is an impartial observer of all basic data oper-

ations actually performed on the evidence. The essential result

is a consistent, trusted, and tamper-evident audit trail that

can be examined after the fact to confirm/debunk challenges.

Recently, Turner (2005) coined the rather descriptive term

Digital Evidence Bag (DEB) to describe his proposed approach

to dealing with the above problems. More precisely, his

work can be described as an effort to create a specialized con-

tainer – an open, common file format – for storing digital

evidence. DEBs bundle digital evidence, associated metadata,

and audit logs into a single structure, providing an audit

trail of operations performed on the digital evidence in the

bag as well as integrity checks. In the following section, we

describe DEBs and other digital evidence containers (or DECs) in

more detail.

All current DEC specifications address the auditing prob-

lem to some degree. However, they all rely on an individual

tool’s ‘voluntary’ participation, i.e., forensic applications

need to use a specialized API, which effectively replaces the

filesystem API. Obviously, reengineering all existing forensic

applications for that specific purpose is a tall order and there

are no compelling incentives at the moment. Therefore, our

work is targeted at the development of operating system-level

mechanisms to support/enforce the use of DECs. As we will

demonstrate, this approach can achieve both automation

and tool-independence without additional development ef-

forts for existing tools. Overall, our approach can also provide

stronger auditing guarantees. We view this as a complemen-

tary mechanism to development and standardization of DEC

formats, which aids in evidence-handling procedures and

provides transparent support for a variety of digital evidence

container formats.

d i g i t a l i n v e s t i g a t i o n 4 (2 0 0 7) 8 8 – 9 7 89

Download	English	Version:

https://daneshyari.com/en/article/458193

Download	Persian	Version:

https://daneshyari.com/article/458193

Daneshyari.com

https://daneshyari.com/en/article/458193
https://daneshyari.com/article/458193
https://daneshyari.com/

