Available online at www.sciencedirect.com

SciVerse ScienceDirect

Expo. Math. 31 (2013) 87-97

www.elsevier.de/exmath

Approximate homomorphisms and derivations in proper JCQ^* -triples via a fixed point method

Reza Saadati^{a,*}, Ghadir Sadeghi^b

Received 16 March 2012; received in revised form 12 July 2012

Abstract

In this paper, we investigate homomorphisms and derivations in proper JCQ^* -triples with the following functional equation:

$$\frac{1}{k}f(kx + ky + kz) = f(x) + f(y) + f(z)$$

for a fixed positive integer k. We moreover prove the generalized Hyers–Ulam stability of homomorphisms in proper JCQ^* -triples and of derivations on proper JCQ^* -triples via a fixed point method

© 2012 Elsevier GmbH. All rights reserved.

MSC 2010: primary 47H10; secondary 47Jxx; 39B52; 46B03; 17C65; 47B48; 47L60; 46L05

Keywords: Fixed point theory; Functional equation; Generalized Hyers–Ulam stability; Proper JCQ^* -triple homomorphism; Proper JCQ^* -triple derivation

1. Introduction and preliminaries

As is extensively discussed in [17], the full description of a physical system S implies the knowledge of three basic ingredients: the set of the observables, the set of the states

E-mail addresses: rsaadati@eml.cc (R. Saadati), ghadir54@yahoo.com, g.sadeghi@sttu.ac.ir (G. Sadeghi).

^a Department of Mathematics and Computer Science, Iran University of Science and Technology, Tehran, Iran

^b Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran

^{*} Corresponding author.

and the dynamics that describes the time evolution of the system by means of the time dependence of the expectation value of a given observable on a given state. Originally the set of the observables was considered to be a C^* -algebra [10]. In many applications, however, this was shown not to be the most convenient choice and the C^* -algebra was replaced by a von Neumann algebra, because the role of the representation turns out to be crucial mainly when long range interactions are involved (see [2] and references therein). Here we use a different algebraic structure, similar to the one considered in [8], which is suggested by the considerations above: because of the relevance of the unbounded operators in the description of S, we will assume that the observables of the system belong to a quasi-*-algebra (A, A_0) (see [18] and references therein), while, in order to have a richer mathematical structure, we will use a slightly different algebraic structure: (A, A_0) will be assumed to be a proper CQ^* -algebra, which has nicer topological properties. In particular, for instance, A_0 is a C^* -algebra.

Let A be a linear space and A_0 be a *-algebra contained in A as a subspace. We say that A is a quasi-*-algebra over A_0 if

- (i) the right and left multiplications of an element of A and an element of A₀ are defined and linear;
- (ii) $x_1(x_2a) = (x_1x_2)a$, $(ax_1)x_2 = a(x_1x_2)$ and $x_1(ax_2) = (x_1a)x_2$ for all $x_1, x_2 \in A_0$ and all $a \in A$:
- (iii) an involution *, which extends the involution of A_0 , is defined in A with the property $(ab)^* = b^*a^*$ whenever the multiplication is defined.

A quasi-*-algebra (A, A_0) is said to be a locally convex quasi-*-algebra if in A a locally convex topology τ is defined such that

- (i) the involution is continuous and the multiplications are separately continuous;
- (ii) A_0 is dense in $A[\tau]$.

Throughout this paper, we suppose that a locally convex quasi-*-algebra $(A[\tau], A_0)$ is complete. For an overview on partial *-algebra and related topics we refer the reader to [1].

In a series of papers [3,4], many authors have considered a special class of quasi-*-algebras, called *proper* CQ^* -algebras, which arise as completions of C^* -algebras. They can be introduced in the following way:

Let A be a right Banach module over the C^* -algebra A_0 with involution * and C^* -norm $\|\cdot\|_0$ such that $A_0 \subset A$. We say that (A, A_0) is a proper CQ^* -algebra if

- (i) A_0 is dense in A with respect to its norm $\|\cdot\|$;
- (ii) $(ab)^* = b^*a^*$ whenever the multiplication is defined;
- (iii) $||y||_0 = \sup_{a \in A, ||a|| < 1} ||ay||$ for all $y \in A_0$.

Ulam [19] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric $\rho(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f: G \to G'$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G$, then a homomorphism $h: G \to G'$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G$?

By now an affirmative answer has been given in several cases, and some interesting variations of the problem have also been investigated.

Download English Version:

https://daneshyari.com/en/article/4582327

Download Persian Version:

https://daneshyari.com/article/4582327

<u>Daneshyari.com</u>