A pseudo-index approach to fractional equations

Rossella Bartolo ${ }^{\text {a }}$, Giovanni Molica Bisci ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy
${ }^{\mathrm{b}}$ Dipartimento PAU, Università 'Mediterranea' di Reggio Calabria, Salita Melissari, Feo di Vito, 89100 Reggio Calabria, Italy

Received 13 May 2014

Abstract

The aim of this paper is investigating the existence and multiplicity of weak solutions to non-local equations involving a general integro-differential operator of fractional type, when the nonlinearity is subcritical and asymptotically linear at infinity. More precisely, in presence of an odd symmetric non-linear term, we prove multiplicity results by using a pseudo-index theory related to the genus. As a particular case we derive existence and multiplicity results for non-local equations involving the fractional Laplacian operator. Our theorems, obtained exploiting a novel abstract framework, extend to the non-local setting some results, already known in the literature, in the case of the classical Laplace operator.

(c) 2014 Elsevier GmbH. All rights reserved.

MSC 2010: primary 49J35; 35A15; 35S15; 58E05; secondary 47G20; 45G05
Keywords: Fractional Laplacian; Integro-differential operator; Variational methods; Asymptotically linear problem; Pseudo-genus

[^0]
1. Introduction

In the past years there has been a considerable amount of research related to nonresonant elliptic equations. For instance, the semilinear problem

$$
\begin{cases}-\Delta u=g(x, u) & \text { in } \Omega \tag{D}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is an open bounded domain of \mathbb{R}^{N} with boundary $\partial \Omega$ and g is a given real function on $\Omega \times \mathbb{R}$ asymptotically linear and possibly odd, has been widely investigated (cf. [1,4,18] and references therein, as well as [8] for the linear case).

Aim of the present work is to provide a multiplicity result for the non-local counterpart of such a problem, whose standard prototype is the fractional Laplacian, that is the equation

$$
\begin{cases}-\mathcal{L}_{K} u=g(x, u) & \text { in } \Omega \tag{P}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega .\end{cases}
$$

Here Ω is an open bounded domain (with Lipschitz boundary $\partial \Omega$) of \mathbb{R}^{N} with $N>2 s$, where $s \in] 0,1\left[\right.$ is fixed, and \mathcal{L}_{K} is the non-local operator defined by

$$
\mathcal{L}_{K} u(x):=\int_{\mathbb{R}^{N}}(u(x+y)+u(x-y)-2 u(x)) K(y) \mathrm{d} y, \quad x \in \mathbb{R}^{N},
$$

with the kernel $\left.K: \mathbb{R}^{N} \backslash\{0\} \rightarrow\right] 0,+\infty[$ such that:

$$
\begin{equation*}
m K \in L^{1}\left(\mathbb{R}^{N}\right), \quad \text { where } m(x)=\min \left\{|x|^{2}, 1\right\} \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { there exists } \theta>0 \text { such that } K(x) \geqslant \theta|x|^{-(N+2 s)} \text { for all } x \in \mathbb{R}^{N} \backslash\{0\} . \tag{1.2}
\end{equation*}
$$

Let us point out that the Dirichlet datum in (P) is given in $\mathbb{R}^{N} \backslash \Omega$ (and not just on $\partial \Omega$), according with the non-local nature of \mathcal{L}_{K}. Moreover, we refer to Remark 2.1 for some comments about the role of the above conditions.

In spite of the fact that a lot of papers are concerned with non-local fractional Laplacian equations with superlinear and sublinear growth (cf., e.g., [20,22] and references therein), only very recently this kind of problem has been studied also in non-local setting for asymptotically linear right-hand side (cf. [13]) and here we would like to go further in this direction.

The interest towards equations involving non-local operators has grown more and more, thanks to their intriguing analytical structure and in view of several applications. Indeed, fractional and non-local operators appear in concrete applications in many fields through a new and fascinating scientific approach; see, for instance, the papers [9-11] as a general reference on this topic.

Finding conditions on the data ensuring that problem (P) possesses multiple (weak) solutions is a problem of interest in the current literature. For instance, in this direction, by using an abstract result proved in [19, Theorem 3], the existence of at least three non-trivial solutions has been proved in [16]; see also [15,17] for related arguments and results.

We also observe that very recently the existence and multiplicity of solutions for elliptic equations in the whole space \mathbb{R}^{N}, driven by a non-local integro-differential operator have

https://daneshyari.com/en/article/4582339

Download Persian Version:
https://daneshyari.com/article/4582339

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rossella.bartolo @poliba.it (R. Bartolo), gmolica@unirc.it (G. Molica Bisci).

