

Available online at www.sciencedirect.com



Expo. Math. 27 (2009) 351-361

EXPOSITIONES MATHEMATICAE

www.elsevier.de/exmath

## Chern–Simons classes for a superconnection

Jaya N.N. Iyer<sup>a,\*</sup>, Uma N. Iyer<sup>b</sup>

<sup>a</sup>The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India <sup>b</sup>308A, Department of Mathematics and Computer Science, CP315, Bronx Community College, University Avenue and West 181 Street, Bronx, NY 10453, USA

Received 24 June 2008

## Abstract

In this note we define the Chern–Simons classes of a flat superconnection, D + L, on a complex  $\mathbb{Z}/2\mathbb{Z}$ -graded vector bundle E on a manifold such that D preserves the grading and L is an odd endomorphism of E. As an application, we obtain a definition of Chern–Simons classes of a (not necessarily flat) morphism between flat vector bundles on a smooth manifold. An application of Reznikov's theorem shows the triviality of these classes when the manifold is a compact Kähler manifold or a smooth complex quasi-projective variety in degrees > 1. © 2009 Elsevier GmbH. All rights reserved.

MSC 2000: 53C05; 53C07; 53C29

Keywords: Supermanifolds; Connections; Secondary classes

## 1. Introduction

Suppose  $(M, \mathscr{C}_M^{\infty})$  is a  $\mathscr{C}^{\infty}$ -differentiable manifold endowed with the structure sheaf  $\mathscr{C}_M^{\infty}$  of smooth functions. Let *E* be a complex  $\mathscr{C}^{\infty}$  vector bundle on *M* of rank *r* equipped with a connection  $\nabla$ . The Chern–Weil theory defines the Chern classes as

 $c_i(E, \nabla) \in H^{2i}_{dR}(M, \mathbb{R})$  for  $i = 0, 1, \dots, r$ 

\* Corresponding author.

E-mail addresses: jniyer@imsc.res.in (J.N.N. Iyer), uma.iyer@bcc.cuny.edu (U.N. Iyer).

in the de Rham cohomology of M. These classes are expressed in terms of the  $GL_r$ -invariant polynomials evaluated on the curvature form  $\nabla^2$ .

Suppose *E* has a flat connection; i.e.,  $\nabla^2 = 0$ . Then the de Rham Chern classes are zero. It is significant to define Chern–Simons classes for a flat connection. These are classes in the  $\mathbb{R}/\mathbb{Z}$ -cohomology and were defined by Chern–Cheeger–Simons in [7,8].

In the supersetting a study of the GL(r, s)-invariant functions has been carried out by Berezin [5]. Quillen [20,21] has looked into the case of defining the Chern character of a superconnection D + L on a  $\mathbb{Z}/2\mathbb{Z}$ -graded complex vector bundle E. Here D is a smooth connection preserving the grading on E and L is an odd endomorphism of E. The differential forms defined by Quillen are obtained from the Chern character str  $e^{D+L}$  (here str denotes the supertrace, see (2) below) and have (1/i!)str $((D + L)^{2i})$  as their term in degree 2i. This term is obtained by substituting the curvature form of the superconnection in the GL(r, s)invariant polynomial,  $P_i := \text{str}(A_1A_2 \dots A_i)$  where  $A_j$  are supermatrices (see also Remark 3.6). Even though  $e^{(D+L)^2}$  is a power series, each degree term is given by a polynomial.

To define differential characters which are unique liftings of the Chern forms (see Section 2.3), we need to look at the standard polynomials  $P_i$ . Notice that the forms  $P_i((D + L)^{2i})$  are polynomial expressions in the curvature form and the first Chern form is a constant multiple of  $P_1((D + L)^2)$ .

In this paper we use the standard polynomials  $P_i$  above to define the Chern–Simons classes.

With notations as in Section 2, we show the following:

**Theorem 1.1.** Suppose  $\{\nabla_t\}_t$  is a family of superconnections on a complex  $\mathbb{Z}/2\mathbb{Z}$ -graded vector bundle E, such that  $\nabla_0$  preserves the  $\mathbb{Z}/2\mathbb{Z}$ -grading. Suppose  $\nabla_{t_0}$  is flat for some  $t_0$ . Then there is a uniquely determined Chern–Simons class

$$CS_k(E, \nabla_{t_0}) \in H^{2k-1}(M, \mathbb{R}/\mathbb{Z})$$

for  $k \ge 1$ .

In particular this applies to the following situation:

**Corollary 1.2.** Suppose M is a smooth manifold. Let E be a complex  $\mathbb{Z}/2\mathbb{Z}$ -graded vector bundle on M equipped with a superconnection  $\nabla = D + L$  such that D preserves the  $\mathbb{Z}/2\mathbb{Z}$ -grading and L is an odd endomorphism of E. Assume that  $\nabla$  is a flat superconnection. Then there exist uniquely determined Chern–Simons classes

 $CS_k(E, \nabla) \in H^{2k-1}(M, \mathbb{R}/\mathbb{Z})$ 

for k > 0. Furthermore, if M is a compact Kähler manifold or a smooth complex quasiprojective variety and D itself is a flat smooth connection then  $CS_k(E, \nabla) = 0$  in  $H^{2k-1}(M, \mathbb{R}/\mathbb{Q})$  for k > 1.

The last claim is an application of Reznikov's theorem [23] on rationality of Chern–Simons classes on compact Kähler manifold.

A homomorphism  $u: E_0 \to E_1$  between vector bundles on a smooth manifold M that induces an isomorphism over a subset  $A \subset M$  corresponds to an element in the relative

Download English Version:

## https://daneshyari.com/en/article/4582497

Download Persian Version:

https://daneshyari.com/article/4582497

Daneshyari.com