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Chern–Simons classes for a superconnection
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Abstract

In this note we define the Chern–Simons classes of a flat superconnection, D + L , on a com-
plex Z/2Z-graded vector bundle E on a manifold such that D preserves the grading and L is an
odd endomorphism of E . As an application, we obtain a definition of Chern–Simons classes of a
(not necessarily flat) morphism between flat vector bundles on a smooth manifold. An application
of Reznikov’s theorem shows the triviality of these classes when the manifold is a compact Kähler
manifold or a smooth complex quasi-projective variety in degrees > 1.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

Suppose (M,C∞
M ) is aC∞-differentiable manifold endowed with the structure sheafC∞

M
of smooth functions. Let E be a complex C∞ vector bundle on M of rank r equipped with
a connection ∇. The Chern–Weil theory defines the Chern classes as

ci (E, ∇) ∈ H2i
d R(M, R) for i = 0, 1, . . . , r
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in the deRham cohomology ofM . These classes are expressed in terms of theGLr -invariant
polynomials evaluated on the curvature form ∇2.
Suppose E has a flat connection; i.e., ∇2 = 0. Then the de Rham Chern classes are zero.

It is significant to define Chern–Simons classes for a flat connection. These are classes in
the R/Z-cohomology and were defined by Chern–Cheeger–Simons in [7,8].
In the supersetting a study of the GL(r, s)–invariant functions has been carried out by

Berezin [5]. Quillen [20,21] has looked into the case of defining the Chern character of a
superconnection D + L on a Z/2Z-graded complex vector bundle E . Here D is a smooth
connection preserving the grading on E and L is an odd endomorphismof E . The differential
forms defined by Quillen are obtained from the Chern character str eD+L (here str denotes
the supertrace, see (2) below) and have (1/ i!)str((D+ L)2i ) as their term in degree 2i . This
term is obtained by substituting the curvature form of the superconnection in the GL(r, s)-
invariant polynomial, Pi := str(A1A2 . . . Ai ) where A j are supermatrices (see also Remark

3.6). Even though e(D+L)2 is a power series, each degree term is given by a polynomial.
To define differential characters which are unique liftings of the Chern forms (see Section

2.3), we need to look at the standard polynomials Pi . Notice that the forms Pi ((D + L)2i )
are polynomial expressions in the curvature form and the first Chern form is a constant
multiple of P1((D + L)2).

In this paper we use the standard polynomials Pi above to define the Chern–Simons
classes.
With notations as in Section 2, we show the following:

Theorem 1.1. Suppose {∇t }t is a family of superconnections on a complex Z/2Z-graded
vector bundle E , such that ∇0 preserves the Z/2Z-grading. Suppose ∇t0 is flat for some t0.
Then there is a uniquely determined Chern–Simons class

CSk(E, ∇t0 ) ∈ H2k−1(M, R/Z)

for k�1.

In particular this applies to the following situation:

Corollary 1.2. Suppose M is a smooth manifold. Let E be a complex Z/2Z-graded vector
bundle on M equipped with a superconnection∇ =D+ L such that D preserves the Z/2Z-
grading and L is an odd endomorphism of E . Assume that∇ is a flat superconnection. Then
there exist uniquely determined Chern–Simons classes

CSk(E, ∇) ∈ H2k−1(M, R/Z)

for k > 0. Furthermore, if M is a compact Kähler manifold or a smooth complex quasi-
projective variety and D itself is a flat smooth connection then CSk(E, ∇) = 0 in H2k−1

(M, R/Q) for k > 1.

The last claim is an applicationofReznikov’s theorem [23] on rationality ofChern–Simons
classes on compact Kähler manifold.
A homomorphism u : E0 → E1 between vector bundles on a smooth manifold M that

induces an isomorphism over a subset A ⊂ M corresponds to an element in the relative
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