

Available online at www.sciencedirect.com

Expositiones Mathematicae

Expo. Math. 25 (2007) 67-76

www.elsevier.de/exmath

The ranks of the homotopy groups of a space of finite LS category

Yves Felix^a, Steve Halperin^b, Jean-Claude Thomas^{c,*}

^aUniversité Catholique de Louvain, 1348, Louvain-La-Neuve, Belgium ^bUniversity of Maryland, College Park, MD 20742-3281, USA ^cUniversité d'Angers, 49045 Bd Lavoisier, Angers, France

Received 15 September 2005; received in revised form 16 February 2006

Abstract

Let *X* be a simply connected CW complex with finitely many cells in each degree. The first part of the paper is a report on the different conjectures for the behavior of the sequence $\operatorname{rk} \pi_i(X)$. In the second part, we give conditions on the Lusternik–Schnirelmann category of *X* and on the depth of the Lie algebra $\pi_*(\Omega X) \otimes \mathbb{Q}$ that imply the exponential growth in *k* of the sequence $\sum_{i=1}^d \operatorname{rk} \pi_{k+i}(X)$, for some *d*.

© 2006 Elsevier GmbH. All rights reserved.

MSC 2000: 55P35; 55P62; 17B70

Keywords: Homotopy Lie algebra; Graded Lie algebra; Exponential growth; LS category

1. Introduction

Throughout this paper *X* will denote a 1-connected non-contractible CW complex *X* with finitely many cells in each degree. Such a space has homotopy groups of the form

 $\pi_i(X) = \mathbb{Z}^{\rho_i} \oplus T_i,$

^{*} Corresponding author. Tel.: +33 2 41 73 50 26; fax: +33 2 41 73 54 54.

E-mail addresses: felix@math.ucl.ac.be (Y. Felix), shalper@deans.umd.edu (S. Halperin), jean-claude.thomas@univ-angers.fr (J.-C. Thomas).

^{0723-0869/}\$ - see front matter © 2006 Elsevier GmbH. All rights reserved. doi:10.1016/j.exmath.2006.04.002

where T_i is finite abelian and $\rho_i = \operatorname{rank} \pi_i(X)$ is finite. While in general the $\pi_i(X)$ can be arbitrary, their ranks, rk $\pi_i(X)$, satisfy remarkable regularity conditions when the rational Lusternik–Schnirelmann category, cat₀ X, is finite.

The LS category of X, cat X, is the least m (or ∞) such that X is the union of m + 1 open sets, each contractible in X; cat₀ X is the LS category of the rationalization X_0 and satisfies cat₀ X \leq cat X [1]. Both cat₀ X and cat X depend only on the homotopy type of X.

The spaces of LS category ≤ 1 are the co-H-spaces and a space has rational category ≤ 2 if and only if it has the rational homotopy type of the homotopy cofiber of a map between suspensions [2].

Suppose $\operatorname{cat}_0 X < \infty$. The dichotomy theorem [3] asserts that either X is (rationally) elliptic, that is dim $\pi_*(X) \otimes \mathbb{Q} < \infty$, or the sequence $\sum_{i=1}^k \operatorname{rk} \pi_i(X)$ grows exponentially in k. In this latter case X is called (rationally) hyperbolic.

The analysis of the behavior of the sequence $\operatorname{rk} \pi_i(X)$ begins with the observation that $\pi_{i+1}(X) \cong \pi_i(\Omega X)$, ΩX denoting the loop space of X. Moreover [4] $L_X = \pi_*(\Omega X) \otimes \mathbb{Q}$ is naturally a graded Lie algebra whose universal enveloping algebra UL_X is naturally isomorphic with $H_*(\Omega X; \mathbb{Q})$. This makes it possible to use Lie theoretic methods to study the sequence $\operatorname{rk} \pi_i(X)$, and two invariants that play an important role are the global dimension and depth of a graded Lie algebra L:

gldim
$$L = \max\{k \mid \operatorname{Ext}_{UL}^{k}(\mathbb{k}, \mathbb{k} \neq 0)\}$$

and

depth
$$L = \min\{k \mid \operatorname{Ext}_{UL}^{k}(\mathbb{k}, UL) \neq 0\}.$$

It is trivial to see that depth $L \leq \text{gldim } L$.

Now if depth $L_X = 0$ then L_X is finite dimensional and concentrated in odd degrees. This implies that the Sullivan model of X is a polynomial algebra with differential zero and so $H^*(X; \mathbb{Q})$ is a polynomial algebra and $\operatorname{cat}_0 X = \infty$. This is the simple part of the following theorem [5], which is a key result in the analysis of the sequence rk $\pi_i(X)$:

If
$$\operatorname{cat}_0 X = m < \infty$$
, then

 $1 \leq \operatorname{depth} L_X \leq \operatorname{cat}_0 X$, and

If depth $L_X = \operatorname{cat}_0 X$ then

depth $L_X = \text{gldim } L_X$.

The notion of *inert element* has also played an important role in the study of the sequence rk $\pi_i(X)$. An element *x* in a graded Lie algebra, *L*, is *inert* if two conditions both hold:

- the ideal *I* generated by *x* is free as a graded Lie algebra, and
- the natural map $UL/I \to I/[I, I]$, $\alpha \mapsto \alpha \cdot x$, is an isomorphism.

Inert elements are studied in [6], where they are called strongly free, and in [7]. If x is inert then as a graded vector space L is isomorphic to the free product of L/I with the free

Download English Version:

https://daneshyari.com/en/article/4582550

Download Persian Version:

https://daneshyari.com/article/4582550

Daneshyari.com