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Abstract
Let

�n(x) = Pn(x)2 − Pn−1(x)Pn+1(x),

where Pn is the Legendre polynomial of degree n. A classical result of Turán states that �n(x)

�0 for x ∈ [−1, 1] and n = 1, 2, 3, . . . . Recently, Constantinescu improved this result.
He established

hn

n(n + 1)
(1 − x2)��n(x) (−1�x �1; n = 1, 2, 3, . . .),

where hn denotes the nth harmonic number. We present the following refinement. Let n�1 be an
integer. Then we have for all x ∈ [−1, 1]

�n(1 − x2)��n(x)
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with the best possible factor

�n = �[n/2]�[(n+1)/2].

Here, �n = 2−2n
(

2n
n

)
is the normalized binomial mid-coefficient.

� 2006 Elsevier GmbH. All rights reserved.

MSC 2000: 26D07; 33C45

Keywords: Legendre polynomials; Turán’s inequality; Normalized binomial mid-coefficient

1. Introduction

The Legendre polynomial of degree n can be defined by

Pn(x) = 1

n!2n

dn

dxn (x2 − 1)n (n = 0, 1, 2, . . .)

which leads to the explicit representation

Pn(x) = 1

2n

[n/2]∑
�=0

(−1)�
(2n − 2�)!

�!(n − �)!(n − 2�)!x
n−2�.

(As usual, [x] denotes the greatest integer not greater than x.) The most important properties
of Pn(x) are collected, for example, in [1,16]. Legendre polynomials belong to the class
of Jacobi polynomials, which are studied in detail in [3,13]. These functions have various
interesting applications. For instance, they play an important role in numerical integration;
see [12].

The following beautiful inequality for Legendre polynomials is due to P. Turán [15]:

�n(x) = Pn(x)2 − Pn−1(x)Pn+1(x)�0 for − 1�x�1 and n�1.1 (1.1)

This inequality has found much attention and several mathematicians provided new proofs,
far-reaching generalizations, and refinements of (1.1). We refer to [8,9,11,14] and the
references given therein.

In this paper we are concerned with a remarkable result published by E. Constantinescu [7]
in 2005. He offered a new refinement and a converse of Turán’s inequality. More precisely,
he proved that the double-inequality

hn

n(n + 1)
(1 − x2)��n(x)� 1

2
(1 − x2) (1.2)

is valid for x ∈ [−1, 1] and n�1. Here, hn =1+1/2+· · ·+1/n denotes the nth harmonic
number.

1 A nice anecdote about Turán reveals that he used (1.1) as his ‘visiting card’; see [4].
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