Proof of a conjecture on monomial graphs *

Xiang-dong Hou ${ }^{\text {a,* }}$, Stephen D. Lappano ${ }^{\text {a }}$, Felix Lazebnik ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, United States
${ }^{\text {b }}$ Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, United States

A R T I C L E I N F O

Article history:

Received 7 June 2016
Received in revised form 5
September 2016
Accepted 7 September 2016
Available online xxxx
Communicated by Dieter Jungnickel
MSC:
05C35
11 T06
11T55
51 E 12

Keywords:
Generalized quadrangle
Girth eight
Monomial graph
Permutation polynomial
Power sum

Abstract

Let e be a positive integer, p be an odd prime, $q=p^{e}$, and \mathbb{F}_{q} be the finite field of q elements. Let $f, g \in \mathbb{F}_{q}[X, Y]$. The graph $G_{q}(f, g)$ is a bipartite graph with vertex partitions $P=\mathbb{F}_{q}^{3}$ and $L=\mathbb{F}_{q}^{3}$, and edges defined as follows: a vertex $(p)=$ $\left(p_{1}, p_{2}, p_{3}\right) \in P$ is adjacent to a vertex $[l]=\left[l_{1}, l_{2}, l_{3}\right] \in L$ if and only if $p_{2}+l_{2}=f\left(p_{1}, l_{1}\right)$ and $p_{3}+l_{3}=g\left(p_{1}, l_{1}\right)$. If $f=X Y$ and $g=X Y^{2}$, the graph $G_{q}\left(X Y, X Y^{2}\right)$ contains no cycles of length less than eight and is edge-transitive. Motivated by certain questions in extremal graph theory and finite geometry, people search for examples of graphs $G_{q}(f, g)$ containing no cycles of length less than eight and not isomorphic to the graph $G_{q}\left(X Y, X Y^{2}\right)$, even without requiring them to be edge-transitive. So far, no such graphs $G_{q}(f, g)$ have been found. It was conjectured that if both f and g are monomials, then no such graphs exist. In this paper we prove the conjecture.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

All graphs considered in this paper are finite, undirected, with no loops or multiple edges. All definitions of graph-theoretic terms that we omit can be found in Bollobás [1]. The order of a graph is the number of its vertices. The degree of a vertex of a graph is the number of vertices adjacent to it. A graph is called r-regular if degrees of all its vertices are equal to r. A graph is called connected if every pair of its distinct vertices is connected by a path. The distance between two distinct vertices in a connected graph is the length of the shortest path connecting them. The girth of a graph containing cycles is the length of a shortest cycle.

Let $k \geq 2$, and $g_{k}(n)$ denote the greatest number of edges in a graph of order n and girth at least $2 k+1$. The function $g_{k}(n)$ has been studied extensively; see the surveys by Bondy [3], and by Füredi and Simonovits [6]. It is known that for $2 \leq k \neq 5$, and sufficiently large n,

$$
\begin{equation*}
c_{k}^{\prime} n^{1+\frac{2}{3 k-3+\epsilon}} \leq g_{k}(n) \leq c_{k} n^{1+\frac{1}{k}}, \tag{1.1}
\end{equation*}
$$

where $\epsilon=0$ if k is odd, $\epsilon=1$ if k is even, and c_{k}^{\prime} and c_{k} are positive constants depending on k only. The upper bound is due to Bondy and Simonovits [2], and the lower bound was obtained via an explicit construction by Lazebnik, Ustimenko and Woldar [10]. (For many prior related results see the references in $[2,10]$.) For $k=5$, a better lower bound is known, and it is of magnitude $n^{1+1 / 5}$. The only known values of k for which the lower bound for $g_{k}(n)$ is of (maximum) magnitude $n^{1+1 / k}$ are $k=2,3$, and 5 . Several graphs of such extremal magnitude were constructed using polynomials over finite fields as we describe below.

Let q be a prime power, and let \mathbb{F}_{q} be the finite field with q elements. For each $k=2,3,5$, consider a bipartite graph $\Gamma_{k}(q)$ with vertex partitions $P_{k}=\mathbb{F}_{q}^{k}$ and $L_{k}=\mathbb{F}_{q}^{k}$, and edges defined as follows.

For $k=2$, a vertex $(p)=\left(p_{1}, p_{2}\right) \in P_{2}$ is adjacent to a vertex $[l]=\left[l_{1}, l_{2}\right] \in L_{2}$ if and only if

$$
p_{2}+l_{2}=p_{1} l_{1}
$$

For $k=3$, a vertex $(p)=\left(p_{1}, p_{2}, p_{3}\right) \in P_{3}$ is adjacent to a vertex $[l]=\left[l_{1}, l_{2}, l_{3}\right] \in L_{3}$ if and only if the following two equalities hold:

$$
p_{2}+l_{2}=p_{1} l_{1}, \quad p_{3}+l_{3}=p_{1} l_{1}^{2}
$$

For $k=5$, a vertex $(p)=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right) \in P_{5}$ is adjacent to a vertex $[l]=$ $\left[l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right] \in L_{5}$ if and only if the following four equalities hold:

$$
p_{2}+l_{2}=p_{1} l_{1}, \quad p_{3}+l_{3}=p_{1} l_{1}^{2}, \quad p_{4}+l_{4}=p_{1} l_{1}^{3}, \quad p_{5}+l_{5}=p_{4} l_{1}-2 p_{3} l_{2}+p_{2} l_{3}
$$

https://daneshyari.com/en/article/4582625

Download Persian Version:

https://daneshyari.com/article/4582625

Daneshyari.com

[^0]: this work was partially supported by a grant from the Simons Foundation (\#426092, Felix Lazebnik).

 * Corresponding author. E-mail addresses: xhou@usf.edu (X. Hou), slappano@mail.usf.edu (S.D. Lappano), fellaz@udel.edu (F. Lazebnik).

