

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On the classification of self-dual [20, 10, 9] codes over GF(7)

Masaaki Harada*, Akihiro Munemasa

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan

A R T I C L E I N F O

Article history: Received 1 February 2016 Received in revised form 6 June 2016 Accepted 10 July 2016 Available online 22 July 2016 Communicated by Chaoping Xing

In memory of Yutaka Hiramine

MSC: 94B05

Keywords: Self-dual code Skew-Hadamard matrix Unimodular lattice

ABSTRACT

It is shown that the extended quadratic residue code of length 20 over GF(7) is a unique self-dual [20, 10, 9] code Csuch that the lattice obtained from C by Construction A is isomorphic to the 20-dimensional unimodular lattice D_{20}^+ , up to equivalence. This is done by converting the classification of such self-dual codes to that of skew-Hadamard matrices of order 20.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let GF(p) be the finite field of order p, where p is prime. As described in [16], self-dual codes are an important class of linear codes for both theoretical and practical reasons. For $p \equiv 1 \pmod{4}$, a self-dual code of length n over GF(p) exists if and only if n is even, and for $p \equiv 3 \pmod{4}$, a self-dual code of length n over GF(p) exists if and only

^{*} Corresponding author.

E-mail addresses: mharada@m.tohoku.ac.jp (M. Harada), munemasa@math.is.tohoku.ac.jp (A. Munemasa).

if $n \equiv 0 \pmod{4}$. It is a fundamental problem to classify self-dual codes over GF(p) and determine the largest minimum weight among self-dual codes over GF(p) for a fixed length. Much work has been done towards classifying self-dual codes over GF(p) and determining the largest minimum weight among self-dual codes of a given length over GF(p) for p = 2 and 3 (see [16]).

Self-dual codes over GF(7) have been classified for lengths up to 12 (see [9]), and the largest minimum weight $d_7(n)$ among self-dual codes of length n over GF(7) has been determined for $n \leq 28$ (see [7, Table 2]). For example, it is known that $d_7(20) = 9$ and the extended quadratic residue code QR_{20} of length 20 over GF(7) is a self-dual [20, 10, 9] code (see [5]).

There are 12 nonisomorphic 20-dimensional unimodular lattices having minimum norm 2 (see [3, Table 16.7]), and one of them is D_{20}^+ . Let $A_7(C)$ denote the unimodular lattice obtained from a self-dual code C over GF(7) by Construction A.

In this paper, we convert the classification of self-dual [20, 10, 9] codes C over GF(7) such that $A_7(C)$ is isomorphic to D_{20}^+ to that of skew-Hadamard matrices of order 20. The main aim of this paper is to give the following partial classification of self-dual [20, 10, 9] codes over GF(7).

Theorem 1. Up to equivalence, the extended quadratic residue code of length 20 over GF(7) is a unique self-dual [20, 10, 9] code C over GF(7) such that $A_7(C)$ is isomorphic to D_{20}^+ .

All computer calculations in this paper were done with the help of MAGMA [1].

2. Preliminaries

58

In this section, we give definitions and notions on self-dual codes, unimodular lattices and skew-Hadamard matrices. Some basic facts on these subjects are also provided.

2.1. Self-dual codes

An [n,k] code C over GF(p) is a k-dimensional subspace of $GF(p)^n$. The value n is called the *length* of C. The *weight* wt(x) of a vector $x \in GF(p)^n$ is the number of non-zero components of x. A vector of C is called a *codeword* of C. The minimum non-zero weight of all codewords in C is called the *minimum weight* of C and an [n,k] code with minimum weight d is called an [n,k,d] code. The *weight enumerator* W(C) of C is given by $W(C) = \sum_{i=0}^{n} A_i y^i$, where A_i is the number of codewords of weight i in C. The *dual code* C^{\perp} of C is defined as

$$C^{\perp} = \{ x \in \mathrm{GF}(p)^n \mid x \cdot y = 0 \text{ for all } y \in C \},\$$

Download English Version:

https://daneshyari.com/en/article/4582635

Download Persian Version:

https://daneshyari.com/article/4582635

Daneshyari.com