Explicit maximal and minimal curves over finite fields of odd characteristics **

Ferruh Özbudak ${ }^{\text {a }}$, Zülfükar Sayg1 ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Institute of Applied Mathematics, Middle East
Technical University, Dumlupinar Bul., No:1, 06800, Ankara, Turkey
b Department of Mathematics, TOBB University of Economics and Technology, Söğütözü, 06530, Ankara, Turkey

A R T I C L E I N F O

Article history:

Received 5 July 2015
Received in revised form 5 July 2016
Accepted 10 July 2016
Available online 26 July 2016
Communicated by Chaoping Xing

MSC:

11G20

Keywords:
Algebraic curves
Rational points
Maximal curves
Minimal curves

Abstract

In this work we present explicit classes of maximal and minimal Artin-Schreier type curves over finite fields having odd characteristics. Our results include the proof of Conjecture 5.9 given in [1] as a very special subcase. We use some techniques developed in [2], which were not used in [1]. © 2016 Elsevier Inc. All rights reserved.

1. Introduction

Algebraic curves over finite fields have various applications in coding theory, cryptography, quasi-random numbers and related areas (see, for example, $[6,7,11,12]$). For these

[^0]applications it is important to know the number of rational points of the curve. Throughout this paper by a curve we mean a smooth, geometrically irreducible and projective curve over a finite field of odd characteristic.

Let p be an odd prime, e be a positive integer, $q=p^{e}$ and n be a positive integer. Let $\mathbb{F}_{q^{n}}$ denote the finite field with q^{n} elements. Let $h \geq 0$ and

$$
S(x)=s_{0} x+s_{1} x^{q}+\cdots+s_{h} x^{q^{h}} \in \mathbb{F}_{q^{n}}[x]
$$

be an $\mathbb{F}_{q^{-}}$-linearized polynomial of degree q^{h} in $\mathbb{F}_{q^{n}}[x]$. We consider the Artin-Schreier type curves χ given by

$$
\begin{equation*}
\chi: \quad y^{q}-y=x S(x)=\sum_{i=0}^{h} s_{i} x^{q^{i}+1} . \tag{1.1}
\end{equation*}
$$

These curves are related to the quadratic forms

$$
\begin{equation*}
Q(x)=\operatorname{Tr}(x S(x)) \tag{1.2}
\end{equation*}
$$

where Tr denote the trace map from $\mathbb{F}_{q^{n}}$ to \mathbb{F}_{q}. Let $N(Q)$ denote the cardinality

$$
N(Q)=\left|\left\{x \in \mathbb{F}_{q^{n}} \mid \operatorname{Tr}(x S(x))=0\right\}\right|
$$

and let $N(\chi)$ be the number of $\mathbb{F}_{q^{n}}$ rational points of the curve χ. Then using Hilbert's Theorem 90 we have

$$
N(\chi)=1+q N(Q)
$$

and hence determining $N(\chi)$ is the same as determining $N(Q)$. Note that in general, it is difficult to determine $N(\chi)$. For the number $N(\chi)$, the Hasse-Weil inequality states that

$$
\begin{equation*}
q^{n}+1-2 g(\chi) \sqrt{q^{n}} \leq N(\chi) \leq q^{n}+1+2 g(\chi) \sqrt{q^{n}} \tag{1.3}
\end{equation*}
$$

where $g(\chi)$ is the genus of χ. We know that there exist curves attaining the Hasse-Weil bounds. If the upper bound is attained then the curve is called a maximal curve and if the lower bound is attained then the curve is called a minimal curve. Here we note that using [11, Proposition 3.7.10] the genus of the curve χ in (1.1) is $g(\chi)=\frac{(q-1) q^{h}}{2}$.

Using the relations between the curve χ in (1.1) and the quadratic form Q in (1.2) some characterizations and classification results on maximal and minimal curves are obtained in $[3,4,8-10]$ for the curves over finite fields with even characteristics. Also using similar relations some results are obtained for the curves over finite fields with odd characteristics in [1]. Furthermore for all integers $n \equiv 0 \bmod 12$ and for all primes p, $5 \leq p \leq 29$ with $\operatorname{gcd}(p, n)=1$ the following conjecture is given in [1, Conjecture 5.9].

https://daneshyari.com/en/article/4582637

Download Persian Version:
https://daneshyari.com/article/4582637

Daneshyari.com

[^0]: A part of this paper is presented at Workshop on Coding Theory and Cryptography 2015, Paris, France, 2015.

 * Corresponding author.

 E-mail addresses: ozbudak@metu.edu.tr (F. Özbudak), zsaygi@etu.edu.tr (Z. Saygı).

