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We use character sums to derive new bounds on the additive 
energy of the set of distances (counted with multiplicities) 
between two subsets of a vector space over a given finite field. 
We also give applications to sumsets of distance sets.
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1. Introduction

1.1. Motivation and previous results

Let Fq be the finite field of q elements. We define the distance between two vectors
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x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ F
n
q

as

d(x,y) =
n∑

j=1
(xj − yj)2.

The interest to this function has been motivated by the results of Iosevich and Rudnev [7]
on the Erdős distance problem, see also [4] for a systematic introduction and [2,5,6,8,11]
for various generalisations. We also refer to recent results of Dietmann [3] and Koh and 
Sun [12] for the state of art on the Erdős distance problem and further references. For 
example, let

D(X ,Y) = # {d (x,y) : (x,y) ∈ X × Y}

be the distance set of two sets X , Y ⊆ F
n
q of cardinalities #X = X and #Y = Y . If 

n ≥ 3 is odd then by [12, Theorem 3.3], we have

#D(X ,Y) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
{

q
2 ,

XY
8qn−1

}
if X < q(n−1)/2,

min
{

q
2 ,

Y
8q(n−1)/2

}
if q(n−1)/2 ≤ X < q(n+1)/2,

min
{

q
2 ,

XY
8qn

}
if q(n+1)/2 ≤ X.

(1)

Furthermore, if n ≥ 2 is even and XY ≥ 16qn, by [12, Theorem 3.5], we have

#D(X ,Y) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q
144 if X < q(n−1)/2,

min
{

q
144 ,

Y
2q(n−1)/2

}
if q(n−1)/2 ≤ X < q(n+1)/2,

min
{

q
144 ,

2XY
qn

}
if q(n+1)/2 ≤ X.

(2)

Here we consider more properties of this set of distances. In particular, given two sets 
X , Y ⊆ F

n
q , we also consider the additive energy of the set of distances, counted with 

multiplicities, that is,

E+(X ,Y) = #
{
(xi,yi)4i=1 ∈ (X × Y)4 :

d (x1,y1) + d (x2,y2) = d (x3,y3) + d (x4,y4)
}
.

We recall the additive energy of sets is closely related to their combinatorial properties, 
see [22] for a systematic background and also [16–19] and references therein for more 
recent results.

Furthermore, some additive character sums can also be estimated via the additive 
energy. For example, by [13, Lemma 4] (taken with � = m = 2), for a nontrivial additive 
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