

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On the additive energy of the distance set in finite fields

Igor E. Shparlinski

Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia

ARTICLE INFO

Article history: Received 13 May 2016 Received in revised form 31 July 2016 Accepted 2 August 2016 Available online 23 August 2016 Communicated by Arne Winterhof

MSC: 11T2352C10

Keywords: Distance sets Additive energy Finite fields Character sums

1. Introduction

1.1. Motivation and previous results

Let \mathbb{F}_q be the finite field of q elements. We define the *distance* between two vectors

ABSTRACT

We use character sums to derive new bounds on the additive energy of the set of distances (counted with multiplicities) between two subsets of a vector space over a given finite field. We also give applications to sumsets of distance sets.

© 2016 Elsevier Inc. All rights reserved.

E-mail address: igor.shparlinski@unsw.edu.au.

http://dx.doi.org/10.1016/j.ffa.2016.08.001 1071-5797/© 2016 Elsevier Inc. All rights reserved.

$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$$

as

$$d(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} (x_j - y_j)^2.$$

The interest to this function has been motivated by the results of Iosevich and Rudnev [7] on the *Erdős distance problem*, see also [4] for a systematic introduction and [2,5,6,8,11] for various generalisations. We also refer to recent results of Dietmann [3] and Koh and Sun [12] for the state of art on the Erdős distance problem and further references. For example, let

$$\mathcal{D}(\mathcal{X}, \mathcal{Y}) = \# \{ d(\mathbf{x}, \mathbf{y}) : (\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y} \}$$

be the distance set of two sets $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{F}_q^n$ of cardinalities $\#\mathcal{X} = X$ and $\#\mathcal{Y} = Y$. If $n \geq 3$ is odd then by [12, Theorem 3.3], we have

$$#\mathcal{D}(\mathcal{X}, \mathcal{Y}) \ge \begin{cases} \min\left\{\frac{q}{2}, \frac{XY}{8q^{n-1}}\right\} & \text{if } X < q^{(n-1)/2}, \\ \min\left\{\frac{q}{2}, \frac{Y}{8q^{(n-1)/2}}\right\} & \text{if } q^{(n-1)/2} \le X < q^{(n+1)/2}, \\ \min\left\{\frac{q}{2}, \frac{XY}{8q^n}\right\} & \text{if } q^{(n+1)/2} \le X. \end{cases}$$
(1)

Furthermore, if $n \ge 2$ is even and $XY \ge 16q^n$, by [12, Theorem 3.5], we have

$$#\mathcal{D}(\mathcal{X},\mathcal{Y}) \ge \begin{cases} \frac{q}{144} & \text{if } X < q^{(n-1)/2}, \\ \min\left\{\frac{q}{144}, \frac{Y}{2q^{(n-1)/2}}\right\} & \text{if } q^{(n-1)/2} \le X < q^{(n+1)/2}, \\ \min\left\{\frac{q}{144}, \frac{2XY}{q^n}\right\} & \text{if } q^{(n+1)/2} \le X. \end{cases}$$
(2)

Here we consider more properties of this set of distances. In particular, given two sets $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{F}_q^n$, we also consider the *additive energy* of the set of distances, counted with multiplicities, that is,

$$E_{+}(\mathcal{X}, \mathcal{Y}) = \# \{ (\mathbf{x}_{i}, \mathbf{y}_{i})_{i=1}^{4} \in (\mathcal{X} \times \mathcal{Y})^{4} : d(\mathbf{x}_{1}, \mathbf{y}_{1}) + d(\mathbf{x}_{2}, \mathbf{y}_{2}) = d(\mathbf{x}_{3}, \mathbf{y}_{3}) + d(\mathbf{x}_{4}, \mathbf{y}_{4}) \}.$$

We recall the additive energy of sets is closely related to their combinatorial properties, see [22] for a systematic background and also [16–19] and references therein for more recent results.

Furthermore, some additive character sums can also be estimated via the additive energy. For example, by [13, Lemma 4] (taken with $\ell = m = 2$), for a nontrivial additive

188

Download English Version:

https://daneshyari.com/en/article/4582643

Download Persian Version:

https://daneshyari.com/article/4582643

Daneshyari.com