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We propose a systematic method to produce potentially good 
recursive towers over finite fields. The graph point of view, 
so as some magma and sage computations are used in this 
process. We also establish some theoretical functional criterion 
ensuring the existence of many rational points on a recursive 
tower. Both points are illustrated by an example, from the 
production process, to the theoretical study.
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0. Introduction

The search of explicit examples of sequences of algebraic curves over a given finite 
field, of genus growing to infinity and having as many rational points as possible with 
regard to their genera, has become more and more important not only for its own, but 
also for several uses such as coding theory and cryptography (Garcia and Stichtenoth [8]) 
or for multiplication algorithms over finite fields (Ballet [1]). For quite a long time, only 
modular examples were known for square size of the finite field (Tsfasman–Vlăduţ–Zink 
[15] and Ihara [11, “The general case”, p. 723]), and only examples coming from class 
field theory were known for non-square size. Unfortunately, these examples were not 
explicit.

In 1995, the important Garcia–Stichtenoth’s paper [7] is released showing the very 
first explicit example. The explicitness comes from the recursive definition of each floor 
of the tower; such towers are now called recursive towers. Since then, several authors 
have given many examples of recursive towers (see Garcia and Stichtenoth’s survey [8]
or Li’s one [13]). Going through literature, we have been able to put forward two distinct 
features. First, except from the case of towers coming from modular theory (e.g. Elkies [5]
and Bassa, Beelen, Garcia, Stichtenoth [2]), the authors never explain how they have been 
able to guess their examples. Second, once the explicit tower is given, there is always 
some difficulty in its study. Either the genus sequence is hard to compute (usually in 
the wildly ramified case), or the existence of many rational points is hard to prove 
(usually in the moderately ramified case). For instance, in the particularly interesting 
Garcia–Stichtenoth’s tower which is recursively defined by the equation y2 = x2+1

2x and 
moderately ramified, the proof of the splitting behavior is quite mysteriously related to 
some functional equation satisfied by the well known Deuring polynomial.1

Apart from our previous article [10], the present work joins in the continuation of those 
of Lenstra’s and Beelen’s [12,3]. A kind of non-existence result is proved by Lenstra [12]

1 This is the characteristic polynomial of supersingular invariants in characteristic p.
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