

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Special values of Kloosterman sums and binomial bent functions

Chunming Tang^{a,*}, Yanfeng Qi^b

 ^a School of Mathematics and Information, China West Normal University, Nanchong, Sichuan, 637002, China
^b School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China

ARTICLE INFO

Article history: Received 1 April 2014 Received in revised form 10 May 2016 Accepted 11 June 2016 Communicated by Stephen D. Cohen

MSC: 06E75 94A60 11T23

Keywords: Regular bent function Walsh transform Kloosterman sums π -adic expansion Cyclotomic fields

ABSTRACT

Let $p \geq 7$ and $q = p^m$. $K_q(a) = \sum_{x \in \mathbb{F}_{p^m}} \zeta^{\operatorname{Tr}_1^m(x^{p^m-2}+ax)}$ is the Kloosterman sum of a on \mathbb{F}_{p^m} , where $\zeta = e^{\frac{2\pi\sqrt{-1}}{p}}$. The value $1 - \frac{2}{\zeta+\zeta^{-1}}$ of $K_q(a)$ and its conjugate have close relationship with a class of binomial functions with Dillon exponent. This paper first presents some necessary conditions for a such that $K_q(a) = 1 - \frac{2}{\zeta+\zeta^{-1}}$. Further, we prove that if p = 11, for any a, $K_q(a) \neq 1 - \frac{2}{\zeta+\zeta^{-1}}$. And for $p \geq 13$, if $a \in \mathbb{F}_{p^s}$ and $s = \gcd(2, m)$, $K_q(a) \neq 1 - \frac{2}{\zeta+\zeta^{-1}}$. In application, these results explain that some class of binomial regular bent functions does not exist.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.ffa.2016.06.001 \\ 1071-5797/© 2016 Elsevier Inc. All rights reserved.$

E-mail address: tangchunmingmath@163.com (C. Tang).

1. Introduction

Let $q = p^m$ and \mathbb{F}_q be a finite field with q elements, where p is a prime and m is a positive integer. The Kloosterman sum of a on \mathbb{F}_q is

$$K_q(a) = 1 + \sum_{x \in \mathbb{F}_q^*} \zeta^{\operatorname{Tr}_1^m(\frac{1}{x} + ax)}, a \in \mathbb{F}_q$$

where Tr_1^m is the trace function from \mathbb{F}_q to \mathbb{F}_p and $\zeta = e^{\frac{2\pi\sqrt{-1}}{p}}$ is a primitive p-th root of unity. Kloosterman sums are related to the construction of some Dillon type bent functions.

Let n = 2m. When p = 2, Dillon [2] proved that monomial function $\operatorname{Tr}_1^n(ax^{t(q-1)})$ $(a \in \mathbb{F}_{p^n}^*, \operatorname{gcd}(t, q+1) = 1)$ is bent if and only if $K_q(a^{q+1}) = 0$, i.e., a^{q+1} is the zero point of Kloosterman sum K_q . Helleseth and Kholosha [8] generalized Dillon's results for p > 2. When p = 2, 3, there exist many zero points of Kloosterman sums [10,13]. Kononen et al. [12] proved the fact that the Kloosterman sum $K_q(\alpha)$ does not take the value zero for p > 3. Moisio [15] proved that any zero point of Kloosterman sums does not belong to a proper subfield of \mathbb{F}_q .

When $p \ge 3$, the binomial function $\operatorname{Tr}_1^n(ax^{t(q-1)}) + bx^{\frac{p^n-1}{2}}$ $(a \in \mathbb{F}_{p^n}^*)$ is studied by Jia et al. [9] and Zheng et al. [21], where $b \in \mathbb{F}_p$ and $\operatorname{gcd}(t, q+1) = 1$. This function is bent if and only if $K_q(a) = 1 - \frac{2}{\zeta^b + \zeta^{-b}}$. Hence, for determining such bent functions, it is important to study the value $1 - \frac{2}{\zeta^b + \zeta^{-b}}$ of Kloosterman sums. Kononen [15] presented a solution for b = 0.

Divisibility results for Kloosterman sums are vital and have many applications. On divisibility results of Kloosterman sums, many works can be found in [19,3–6,14]. Moloney [16] analyzed divisibility results for $K_q(a)$ by *p*-adic methods.

This paper will study the special value $1 - \frac{2}{\zeta^b + \zeta^{-b}}$ of Kloosterman sums. By the π -adic expansions of $K_q(a)$ and $1 - \frac{2}{\zeta^b + \zeta^{-b}}$, we obtain some necessary conditions for $K_q(a) = 1 - \frac{2}{\zeta^b + \zeta^{-b}}$, where π is a prime of local field $\mathbb{Q}_p(\zeta)$ satisfying $\pi^{p-1} + p = 0$ and $\zeta \equiv 1 + \pi \mod \pi^2$. Further, we prove that if p = 11, for any $a \in \mathbb{F}_q$, $K_q(a) \neq 1 - \frac{2}{\zeta^b + \zeta^{-b}}$, and if $p \geq 13$, $a \in \mathbb{F}_{p^s}$ and $s = \gcd(2, m)$, $K_q(a) \neq 1 - \frac{2}{\zeta^b + \zeta^{-b}}$. Hence, these results explain that some class of binomial regular bent functions does not exist.

The rest of the paper is organized as follows. Section 2 introduces some background knowledge. Section 3 gives the π -adic expansion of Kloosterman sums and elements in $\mathbb{Q}_p(\zeta)$. Section 4 presents results on special values of Kloosterman sums. Section 5 proves some results on bent functions for application. Section 6 makes a conclusion.

2. Preliminaries

2.1. Local fields and Gauss sums

Throughout this paper, let $q = p^m$, \mathbb{F}_q be a finite field with q elements and \mathbb{F}_q^* the multiplicative group of \mathbb{F}_q , where p is a prime and m is a positive inte-

Download English Version:

https://daneshyari.com/en/article/4582658

Download Persian Version:

https://daneshyari.com/article/4582658

Daneshyari.com