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We investigate monomials ax? over the finite field with ¢

elements [y, in the case where the degree d is equal to ;,__11 +1

with ¢ = (¢’)™ for some n. For n = 6 we explicitly list all a’s
for which az? is a complete permutation polynomial (CPP)
over F;. Some previous characterization results by Wu et al.
for n = 4 are also made more explicit by providing a complete
list of a’s such that az? is a CPP. For odd n, we show that
if ¢ is large enough with respect to n then az? cannot be a
CPP over Fg, unless ¢ is even, n = 3 (mod 4), and the trace
Trg, /, (a7') is equal to 0.
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1. Introduction

Let Fy, £ = p", p prime, denote the finite field of order £. A permutation polynomial (or
PP) f(z) € Fy[z] is a bijection of Fy onto itself. A polynomial f(x) € Fy[x] is a complete
permutation polynomial (or CPP), if both f(z) and f(x)+2 are permutation polynomials
of Fy. Both permutation polynomials and complete permutation polynomials have been
extensively studied also because of their applications to cryptography and combinatorics;
see for instance [6,9,11,12,16,18] and the references therein. In particular, CPPs over fields
of characteristic 2 give rise to bent—negabent boolean functions, which are a useful tool
in cryptography; see [14].

Some families of CPPs are obtained in [6,9,11,13,17,18]. Nevertheless, CPPs seem to
be very rare objects, even if we restrict to the monomial case. It is easily seen that a
monomial az? is a CPP if and only if (d,¢/ — 1) =1 and 2% + £ is a PP. This motivates
the investigation of permutation binomials of type 2 4 bx for d = (£ —1)/m + 1 with m
a divisor of £ — 1. B

In [3-5,18,19] PPs of type fp(z) = =T + bz over Fyn are thoroughly investigated
forn =2, n =3, and n = 4. For n = 6, sufficient conditions for f; to be a PP of s are
provided in [18,19] in the special cases of characteristic p € {2,3,5}. The case p=n+1
is dealt with in [10].

In this paper, we provide a complete classification of permutation polynomials f; in
the case n = 6, for arbitrary ¢q. Theorems 1.1 and 1.2 list explicitly for ¢ > 421 all
elements b € Fgo \ IF, such that f; is a PP. For smaller values of ¢, Theorems 1.1 and 1.2
provide families of PPs of type f,. We also determine the number of PPs of type f; for
q > 421; see Corollary 4.3. It should be noted that for p = 7, the sufficient condition
in [10] for f;, to be a PP is that b9~ = —1; our results show that this is not a necessary
condition.

Our methods also work for n = 4. This allows us to list PPs of type f, for n = 4;
see Remark 4.4. In this way, a more explicit description of the necessary and sufficient
conditions of [19, Theorem 4.1] is given.

In the paper the case n odd is dealt with as well. Note that for n odd f; being a PP
implies that b_lgcq:fill+1 is a CPP only for p = 2. We show that if p does not divide
(n+1)/2 or Trr, /v, (b) # 0, then for ¢ large enough with respect to n the polynomial

n_y
fp is never a PP; see Theorem 5.2. This shows that for n odd the monomial b—lp T

is never a CPP unless n = 3 (mod 4). For n = 3 Theorem 5.2 provides a shorter proof
of the results of [5, Section 3.

A key tool in our investigation is the following criterion from [13], which relates the
existence of a suitable [F -rational point of some algebraic curve to f; being a PP of [Fy»
or not.

Niederreiter—Robinson Criterion. The polynomial

fola) = T 1 b (1)
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