

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On monomial complete permutation polynomials

Daniele Bartoli^a, Massimo Giulietti^{a,*}, Giovanni Zini^b

- ^a Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia, Italy
- ^b Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni, 67/A, 50134 Firenze, Italy

ARTICLE INFO

Article history: Received 11 February 2016 Received in revised form 26 April 2016

Accepted 13 June 2016 Communicated by Xiang-dong Hou

MSC: 11T06

Keywords: Permutation polynomials Complete permutation polynomials Bent–negabent boolean functions

ABSTRACT

We investigate monomials ax^d over the finite field with q elements \mathbb{F}_q , in the case where the degree d is equal to $\frac{q-1}{q'-1}+1$ with $q=(q')^n$ for some n. For n=6 we explicitly list all a's for which ax^d is a complete permutation polynomial (CPP) over \mathbb{F}_q . Some previous characterization results by Wu et al. for n=4 are also made more explicit by providing a complete list of a's such that ax^d is a CPP. For odd n, we show that if q is large enough with respect to n then ax^d cannot be a CPP over \mathbb{F}_q , unless q is even, $n\equiv 3\pmod 4$, and the trace $\mathrm{Tr}_{\mathbb{F}_q/\mathbb{F}_{q'}}(a^{-1})$ is equal to 0.

© 2016 Elsevier Inc. All rights reserved.

 $^{^{\,\}pm}$ The research of D. Bartoli, M. Giulietti, and G. Zini was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza" – Prot. N. 2012XZE22K_005) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA – INdAM).

^{*} Corresponding author.

E-mail addresses: daniele.bartoli@unipg.it (D. Bartoli), massimo.giulietti@unipg.it (M. Giulietti), gzini@math.unifi.it (G. Zini).

1. Introduction

Let \mathbb{F}_{ℓ} , $\ell = p^h$, p prime, denote the finite field of order ℓ . A permutation polynomial (or PP) $f(x) \in \mathbb{F}_{\ell}[x]$ is a bijection of \mathbb{F}_{ℓ} onto itself. A polynomial $f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (or CPP), if both f(x) and f(x)+x are permutation polynomials of \mathbb{F}_{ℓ} . Both permutation polynomials and complete permutation polynomials have been extensively studied also because of their applications to cryptography and combinatorics; see for instance [6,9,11,12,16,18] and the references therein. In particular, CPPs over fields of characteristic 2 give rise to bent–negabent boolean functions, which are a useful tool in cryptography; see [14].

Some families of CPPs are obtained in [6,9,11,13,17,18]. Nevertheless, CPPs seem to be very rare objects, even if we restrict to the monomial case. It is easily seen that a monomial ax^d is a CPP if and only if $(d, \ell - 1) = 1$ and $x^d + \frac{x}{a}$ is a PP. This motivates the investigation of permutation binomials of type $x^d + bx$ for $d = (\ell - 1)/m + 1$ with m a divisor of $\ell - 1$.

In [3–5,18,19] PPs of type $f_b(x) = x^{\frac{q^n-1}{q-1}+1} + bx$ over \mathbb{F}_{q^n} are thoroughly investigated for n=2, n=3, and n=4. For n=6, sufficient conditions for f_b to be a PP of \mathbb{F}_{q^6} are provided in [18,19] in the special cases of characteristic $p \in \{2,3,5\}$. The case p=n+1 is dealt with in [10].

In this paper, we provide a complete classification of permutation polynomials f_b in the case n=6, for arbitrary q. Theorems 1.1 and 1.2 list explicitly for $q \geq 421$ all elements $b \in \mathbb{F}_{q^6} \setminus \mathbb{F}_q$ such that f_b is a PP. For smaller values of q, Theorems 1.1 and 1.2 provide families of PPs of type f_b . We also determine the number of PPs of type f_b for $q \geq 421$; see Corollary 4.3. It should be noted that for p=7, the sufficient condition in [10] for f_b to be a PP is that $b^{q-1}=-1$; our results show that this is not a necessary condition.

Our methods also work for n = 4. This allows us to list PPs of type f_b for n = 4; see Remark 4.4. In this way, a more explicit description of the necessary and sufficient conditions of [19, Theorem 4.1] is given.

In the paper the case n odd is dealt with as well. Note that for n odd f_b being a PP implies that $b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is a CPP only for p=2. We show that if p does not divide (n+1)/2 or $\mathrm{Tr}_{\mathbb{F}_q/\mathbb{F}_{q'}}(b) \neq 0$, then for q large enough with respect to n the polynomial f_b is never a PP; see Theorem 5.2. This shows that for n odd the monomial $b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is never a CPP unless $n \equiv 3 \pmod 4$. For n=3 Theorem 5.2 provides a shorter proof of the results of [5, Section 3].

A key tool in our investigation is the following criterion from [13], which relates the existence of a suitable \mathbb{F}_q -rational point of some algebraic curve to f_b being a PP of \mathbb{F}_{q^n} or not.

Niederreiter-Robinson Criterion. The polynomial

$$f_b(x) = x^{\frac{q^n - 1}{q - 1} + 1} + bx \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/4582659

Download Persian Version:

https://daneshyari.com/article/4582659

<u>Daneshyari.com</u>