

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Repeated-root constacyclic codes of length kl^ap^b over a finite field

Hongxi Tong

Department of Mathematics, Shanghai University, Shanghai 200444, China

A R T I C L E I N F O

Article history: Received 21 December 2015 Received in revised form 18 April 2016 Accepted 10 June 2016 Communicated by Chaoping Xing

MSC: 94B15 94B05

Keywords: Constacyclic codes Cyclotomic cosets Generator polynomials

ABSTRACT

In this paper, we give an sufficient and necessary condition that a polynomial is irreducible over \mathbb{F}_q . For different odd primes k, l and p, we obtain generator polynomials of constacyclic codes of length kl^ap^b over finite field \mathbb{F}_q , where char $\mathbb{F}_q = p$ and $(\operatorname{ord}_k q, l) = 1$. And we answer the question in [3] under the condition.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_q be the finite field of size q, where q is a power of p. For $\lambda \in \mathbb{F}_q^*$, a λ -constacyclic code of length n over \mathbb{F}_q can be viewed as an ideal $\langle g(x) \rangle$ in the ring $\frac{\mathbb{F}_q[x]}{x^n - \lambda}$, where the generator polynomial g(x) is the unique monic polynomial of minimum degree in the code and $g(x)|(x^n - \lambda)$. The ring $\frac{\mathbb{F}_q[x]}{x^n - \lambda}$ is a principal ideal ring, i.e., every ideal can be

 $\label{eq:http://dx.doi.org/10.1016/j.ffa.2016.06.006} 1071-5797/© 2016$ Elsevier Inc. All rights reserved.

E-mail address: tonghx@shu.edu.cn.

generated by a monic divisor of $x^n - \lambda$. So the irreducible factorization of $x^n - \lambda$ in $\mathbb{F}_q[x]$ determines all λ -constacyclic codes of length n. When $p \nmid n$, a λ -constacyclic code is called a (simple-root) constacyclic code. When p|n, a λ -constacyclic code is called a repeated-root constacyclic code.

Recently, Dinh determined generator polynomials of all constacyclic codes over \mathbb{F}_q , of lengths $2p^s$, $3p^s$, lp^s and $2l^mp^n$ [5–8]. Generator polynomials of all repeated-root constacyclic codes of length 2^tp^s over \mathbb{F}_q were given in [1]. In [2] and [4], authors studied all repeated-root constacyclic codes of length lp^s over \mathbb{F}_q .

In this paper, we study all repeated-root constacyclic codes of length kl^ap^b over \mathbb{F}_q , where k, l, p are different odd primes, $(\operatorname{ord}_k q, l) = 1$ and p is the character of \mathbb{F}_q . We give generator polynomials of all repeated-root constacyclic codes. In section 2, we give some results about *n*-equivalent relation introduced by B. Chen et al. in [2]. And we also give some sufficient and necessary conditions that a polynomial is irreducible over \mathbb{F}_q . In section 3, we give our main results, the factorization of $x^{kl^ap^b} - \lambda$ in $\mathbb{F}_q[x]$ and generator polynomials of all repeated-root constacyclic codes of length kl^ap^b over \mathbb{F}_q . At last, we give an example of repeated-root constacyclic codes of length $5 \times 3^2 \times 7$ over \mathbb{F}_7 .

2. Preliminaries

For classifying constacyclic codes of length n over \mathbb{F}_q , B. Chen et al. introduced the equivalence relation \sim_n called *n*-equivalence in [2]. These constacyclic codes belonging to the same equivalence class have the same distance structure and the same algebraic structure.

Definition 1. [2] Let *n* be a positive integer. For any elements $\lambda, \mu \in \mathbb{F}_q^*$, if the polynomial $\lambda x^n - \mu$ has a root in \mathbb{F}_q , λ and μ are called *n*-equivalent in \mathbb{F}_q^* , denoted by $\lambda \sim_n \mu$.

Proposition 1. [3] For any $\lambda, \mu \in \mathbb{F}_{q}^{*}$, the following four statements are equivalent:

(1) $\lambda^{-1}\mu \in \langle \beta^n \rangle$.

(2) $(\lambda^{-1}\mu)^d = 1$, where $d = \frac{q-1}{(n,q-1)}$.

(3) λ and μ are n-equivalent in \mathbb{F}_q^* , namely there exists an element $a \in \mathbb{F}_q^*$ such that $a^n \lambda = \mu$.

(4) There exists an $a \in \mathbb{F}_q^*$ such that

$$\varphi_a: \mathbb{F}_q[x]/\langle x^n - \mu \rangle \to \mathbb{F}_q[x]/\langle x^n - \lambda \rangle$$
$$f(x) \mapsto f(ax)$$

is an \mathbb{F}_q -algebra isomorphism.

Next we give some results on irreducible polynomials.

Download English Version:

https://daneshyari.com/en/article/4582660

Download Persian Version:

https://daneshyari.com/article/4582660

Daneshyari.com