Hyperquadratic continued fractions and automatic sequences

Alain Lasjaunias ${ }^{\text {a,* }}$, Jia-Yan Yao ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut de Mathématiques de Bordeaux, CNRS-UMR 5251, Talence 33405, France
${ }^{\text {b }}$ Department of Mathematics, Tsinghua University, Beijing 100084, People's Republic of China

A R T I C L E I N F O

Article history:

Received 30 November 2015
Received in revised form 4 March
2016
Accepted 7 March 2016
Available online 21 March 2016
Communicated by Arne Winterhof

$M S C$:

primary 11J70, 11T55
secondary 11B85

Keywords:

Finite fields
Power series over a finite field
Continued fractions
Finite automata
Automatic sequences

Abstract

We show that three different families of hyperquadratic elements, studied in the literature, have the following property: For these elements, the leading coefficients of the partial quotients in their continued fraction expansion form 2 -automatic sequences. We also show that this is not true for algebraic elements in $\mathbb{F}(q)$ in general. Indeed, we use an element studied by Mills and Robbins as counterexample. This element is algebraic in $\mathbb{F}(3)$ but the principal coefficients of the partial quotients do not form an automatic sequence.

© 2016 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.ffa.2016.03.002
1071-5797/® 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_{q} be the finite field containing q elements, with $q=p^{s}$ where p is a prime number and $s \geqslant 1$ is an integer. We consider the field of power series in $1 / T$, with coefficients in \mathbb{F}_{q}, where T is a formal indeterminate. We will denote this field by $\mathbb{F}(q)$. Hence a non-zero element of $\mathbb{F}(q)$ is written as $\alpha=\sum_{k \leqslant k_{0}} c_{k} T^{k}$ with $k_{0} \in \mathbb{Z}, c_{k} \in \mathbb{F}_{q}$, and $c_{k_{0}} \neq 0$. Noting the analogy of this expansion with a decimal expansion for a real number, it is natural to regard the elements of $\mathbb{F}(q)$ as (formal) numbers and indeed they are analogue to real numbers in many ways.

It is well known that the sequence of coefficients (or digits) $\left(c_{k}\right)_{k \leqslant k_{0}}$ for α is ultimately periodic if and only if α is rational, that is α belongs to $\mathbb{F}_{q}(T)$. However, and this is a singularity of the formal case, this sequence of digits can also be characterized for all elements in $\mathbb{F}(q)$ which are algebraic over $\mathbb{F}_{q}(T)$. The origin of the following theorem can be found in the work of Christol [8] (see also the article of Christol, Kamae, Mendès France, and Rauzy [9]).

Theorem 1 (Christol). Let α in $\mathbb{F}(q)$ with $q=p^{s}$. Let $\left(c_{k}\right)_{k \leqslant k_{0}}$ be the sequence of digits of α and $u(n)=c_{-n}$ for all integers $n \geqslant 0$. Then α is algebraic over $\mathbb{F}_{q}(T)$ if and only if the following set of subsequences of $(u(n))_{n \geqslant 0}$

$$
K(u)=\left\{\left(u\left(p^{i} n+j\right)\right)_{n \geqslant 0} \mid i \geqslant 0,0 \leqslant j<p^{i}\right\}
$$

is finite.
The sequences having the finiteness property stated in this theorem were first introduced in the 1960s by computer scientists. Considered in a larger setting (see the beginning of Section 3), they are now called automatic sequences, and form a class of deterministic sequences which can be defined in several different ways. A full account on this topic and a very complete list of references are to be found in the book of Allouche and Shallit [2]. In this note we want to show a different type of connection between automatic sequences and some particular algebraic power series in $\mathbb{F}(q)$.

Firstly, let us describe these particular algebraic elements. Let α be irrational in $\mathbb{F}(q)$. We say that α is hyperquadratic, if there exists $r=p^{t}$ with $t \geqslant 0$ an integer such that the elements $\alpha^{r+1}, \alpha^{r}, \alpha$, and 1 are linked over $\mathbb{F}_{q}(T)$. Thus an hyperquadratic element is algebraic over $\mathbb{F}_{q}(T)$ of degree $\leqslant r+1$, and the reader may consult [6] where a precise definition was introduced. The subset of hyperquadratic elements in $\mathbb{F}(q)$ is denoted by $\mathcal{H}(q)$. Note that this subset contains the quadratic power series (take $r=1$) and also the cubic power series (take $r=p$). Originally, these algebraic elements were introduced in the 1970s by Baum and Sweet (see [4]), in the particular case $q=2$, and later considered in the 1980s by Mills and Robbins [21] and Voloch [25], in all characteristic. It appears that $\mathcal{H}(q)$ contains elements having an arbitrary large algebraic degree. But hyperquadratic power series are rare: an algebraic power series of high algebraic degree

https://daneshyari.com/en/article/4582668

Download Persian Version:

https://daneshyari.com/article/4582668

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Alain.Lasjaunias@math.u-bordeaux1.fr (A. Lasjaunias), jyyao@math.tsinghua.edu.cn (J.-Y. Yao).

