Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On the 2-ranks of a class of unitals

Rocco Trombetti^a, Yue Zhou^{a,b,*}

 ^a Dipartimento di Mathematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II", I-80126 Napoli, Italy
^b College of Science, National University of Defense Technology, 410072 Changsha, China

ARTICLE INFO

Article history: Received 12 October 2015 Received in revised form 15 March 2016 Accepted 22 March 2016 Available online 7 April 2016 Communicated by Olga Polverino

MSC: 51A45 12K10 51A35 11L05

Keywords: Unital Binary code Shift plane Kloosterman sum

ABSTRACT

Let \mathcal{U}_{θ} be a unital defined in a shift plane of odd order q^2 , which are constructed recently in [40]. In particular, when the shift plane is desarguesian, \mathcal{U}_{θ} is a special Buekenhout– Metz unital formed by a union of ovals. We investigate the dimensions of the binary codes derived from \mathcal{U}_{θ} . By using Kloosterman sums, we obtain a new lower bound on the aforementioned dimensions which improves Leung and Xiang's result [32,33]. In particular, for $q = 3^m$, this new lower bound equals $\frac{2}{3}(q^3 + q^2 - 2q) - 1$ for even m and $\frac{2}{3}(q^3 + q^2 + q) - 1$ for odd m.

© 2016 Elsevier Inc. All rights reserved.

 $[\]ast$ Corresponding author at: College of Science, National University of Defense Technology, 410072 Changsha, China.

E-mail addresses: rtrombet@unina.it (R. Trombetti), yue.zhou.ovgu@gmail.com (Y. Zhou).

1. Introduction

Let t, v, k and λ be positive integers. A t-(v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a set \mathcal{P} of v points together with a set \mathcal{B} of k-subsets of \mathcal{P} (called blocks) satisfying that every t-subset of \mathcal{P} is contained in exactly λ blocks.

Let *m* be an integer larger than or equal to 3. A *unital* of *order m* is a $2 \cdot (m^3 + 1, m + 1, 1)$ design.

Most of the known unitals can be embedded in projective planes Π of order q^2 . In these cases, a unital is a set \mathcal{U} of $q^3 + 1$ points such that each line of Π intersects \mathcal{U} in 1 or q + 1points. When Π is the desarguesian projective plane $PG(2, q^2)$, the set of absolute points of a unitary polarity, or equivalently speaking, the rational points on a nondegenerate Hermitian curve form a *classical* unital. There are also non-classical unitals in $PG(2, q^2)$, for instance Buekenhout–Metz unitals [11] are a proper generalization of the classical ones. There are unitals which are not embeddable in a projective plane, for instance the Ree unitals [35]. Moreover, it is not necessary that the order of a unital is a prime power, for instance, the order of the unitals discovered in [6] equals 6.

Unitals also exist in non-desarguesian planes. For instance, there are unitals derived from unitary polarities in various translation planes and shift planes; see [1,3,15,16,25,28]. Commutative semifield planes, as a special type of translation and shift planes, also contain some unitals which are analogous to the Buekenhout–Metz ones in the desarguesian case [2,45].

Recently in [40], the authors have been investigating the existence and properties of a special type of unitals \mathcal{U}_{θ} consisting of the union of ovals in shift planes $\Pi(f)$ of odd order in terms of planar functions f on \mathbb{F}_{q^2} . In particular, when the planar function is $f(x) = x^2$, the shift plane $\Pi(f)$ is desarguesian and the unital \mathcal{U}_{θ} is exactly the one independently discovered by Hirschfeld and Szönyi [22] and by Baker and Ebert [7], which forms a special type of Buekenhout–Metz unitals in desarguesian planes; see [40] or Section 2 for more details.

Let \mathcal{D} be a design with v points. Fix an arbitrary order on the points of \mathcal{D} , say P_1, \ldots, P_v . The characteristic vector v_B of a block B is the binary vector of length v such that $(v^B)_i = 1$ if $P_i \in B$, and $(v^B)_i = 0$ otherwise. Generally, a linear code is an arbitrary subspace of a vector space over a field. For any prime number p, the linear p-ary code defined by \mathcal{D} is the vector space $C_p(\mathcal{D})$ spanned by the characteristic vectors of the blocks of \mathcal{D} over \mathbb{F}_p . In another word, $C_p(\mathcal{D})$ is the subspace generated by the rows of the incidence matrix of \mathcal{D} over \mathbb{F}_p . The p-rank of \mathcal{D} is defined as the dimension of $C_p(\mathcal{D})$. It is well-known that $C_p(\mathcal{D})$ is of interest only if p divides the order of \mathcal{D} ; see [5, Theorem 2.4.1].

The *p*-ranks of designs have been studied intensively for several reasons. First, if two designs are isomorphic, then the *p*-ranks of them are the same. Hence, the *p*-ranks can help us to distinguish two non-isomorphic designs. Second, there are a few long-standing open problems related to *p*-ranks. For instance, Hamada [21] conjectured that the *p*-rank of a design with the same parameters of a geometric design $PG_d(n,q)$ or $AG_d(n,q)$ is

Download English Version:

https://daneshyari.com/en/article/4582671

Download Persian Version:

https://daneshyari.com/article/4582671

Daneshyari.com