

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Several classes of optimal ternary cyclic codes with minimal distance four

Lisha Wang^a, Gaofei Wu^{b,*}

 ^a Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, 610031, China
^b State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, 710071, China

ARTICLE INFO

Article history: Received 30 July 2015 Received in revised form 13 January 2016 Accepted 28 March 2016 Available online 25 April 2016 Communicated by Chaoping Xing

MSC: 94B15 11T71

Keywords: Cyclic codes Linear codes Optimal codes Sphere packing bound

ABSTRACT

In this paper, by analyzing the solutions of certain equations over \mathbb{F}_{3^m} , we present four classes of optimal ternary cyclic codes with parameters $[3^m - 1, 3^m - 1 - 2m, 4]$. It is shown that some recent work on this class of optimal ternary cyclic codes are special cases of our results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let $q = p^m$ be a power of a prime, where p is a prime and m is a positive integer. Denote the finite field of q elements by \mathbb{F}_{p^m} . An [n, k, d] linear

* Corresponding author. E-mail addresses: wangtaolisha@163.com (L. Wang), wugf@nipc.org.cn (G. Wu).

http://dx.doi.org/10.1016/j.ffa.2016.03.007 1071-5797/© 2016 Elsevier Inc. All rights reserved. code over \mathbb{F}_p is a k-dimensional subspace of \mathbb{F}_p^n with minimum Hamming distance d. An [n, k] cyclic code \mathcal{C} is an [n, k] linear code with the property that any cyclic shift of a codeword is another codeword of \mathcal{C} . Let gcd(n, p) = 1. By identifying any codeword $(c_0, c_1, \dots, c_{n-1}) \in \mathcal{C}$ with

$$c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1} \in \mathbb{F}_p[x]/(x^n - 1),$$

any cyclic code of length n over \mathbb{F}_p corresponds to an ideal of the polynomial ring $\mathbb{F}_p[x]/(x^n-1)$. It is well known that every ideal of $\mathbb{F}_p[x]/(x^n-1)$ is principal. Thus, any cyclic code can be expressed as $\langle g(x) \rangle$, where g(x) is monic and has the least degree. The polynomial g(x) is called the generator polynomial and $h(x) = (x^n - 1)/g(x)$ is called the parity-check polynomial of \mathcal{C} . Let A_i denote the number of codewords with Hamming weight i in a code \mathcal{C} of length n. The weight enumerator of \mathcal{C} is defined by

$$1 + A_1x + A_2x^2 + \dots + A_nx^n$$

Cyclic codes are an important subclass of linear codes. Due to their efficient encoding and decoding algorithms [2,7,12], cyclic codes have many applications in consumer electronics, data storage systems, and communication systems. The reader is referred to [1,3,5,6,9,10,13-16] for some recent work on cyclic codes. In 2013, Ding and Helleseth [4] constructed several classes of optimal ternary cyclic codes with parameters $[3^m - 1, 3^m - 1 - 2m, 4]$ by using almost perfect nonlinear monomials and some other monomials over \mathbb{F}_{3^m} . Nine open problems about this class of optimal ternary cyclic codes were also proposed in [4]. By analyzing irreducible factors of certain polynomials with low degrees over finite fields, one of the open problems was solved by Li et al. [11]. In [11], the authors also presented several classes of optimal cyclic codes with parameters $[3^m - 1, 3^m - 1 - 2m, 4]$ and $[3^m - 1, 3^m - 2 - 2m, 5]$.

In this paper, we will present several new classes of optimal ternary cyclic codes with parameters $[3^m - 1, 3^m - 1 - 2m, 4]$ by analyzing the solutions of certain equations over \mathbb{F}_{3^m} . It will be shown that some previous results about this class of optimal ternary cyclic codes given in [4,11] are special cases of our results.

2. Preliminaries

Let α be a generator of $\mathbb{F}_{3^m}^* = \mathbb{F}_{3^m} \setminus \{0\}$ and $m_{\alpha^i}(x)$ be the minimal polynomial of α^i over \mathbb{F}_3 . For any $1 \leq e \leq 3^m - 1$, let $\mathcal{C}_{(1,e)}$ denote the cyclic code over \mathbb{F}_3 with generator polynomial $m_{\alpha}(x)m_{\alpha^e}(x)$, where e is not in the 3-cyclotomic coset modulo $3^m - 1$ containing 1.

For a prime p, the p-cyclotomic coset modulo $p^m - 1$ containing j is defined as

$$C_j = \{j \cdot p^s \mod (p^m - 1) : s = 0, 1, \cdots, m - 1\}.$$

Download English Version:

https://daneshyari.com/en/article/4582673

Download Persian Version:

https://daneshyari.com/article/4582673

Daneshyari.com