On a class of diagonal equations over finite fields

Ioulia N. Baoulina
Department of Mathematics, Moscow State Pedagogical University, Krasnoprudnaya str. 14, Moscow 107140, Russia

A R T I C L E I N F O

Article history:

Received 12 February 2016
Received in revised form 10 April 2016
Accepted 26 April 2016
Available online 4 May 2016
Communicated by Daqing Wan
To the memory of my first teacher in number theory, Elena B. Gladkova (1953-2015)

MSC:

11G25
11T24

Keywords:
Equation over a finite field
Diagonal equation
Gauss sum
Jacobi sum

Abstract

Using properties of Gauss and Jacobi sums, we derive explicit formulas for the number of solutions to a diagonal equation of the form $x_{1}^{2^{m}}+\cdots+x_{n}^{2^{m}}=0$ over a finite field of characteristic $p \equiv \pm 3(\bmod 8)$. All of the evaluations are effected in terms of parameters occurring in quadratic partitions of some powers of p.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_{q} be a finite field of characteristic $p>2$ with $q=p^{s}$ elements, η be the quadratic character on $\mathbb{F}_{q}\left(\eta(x)=+1,-1,0\right.$ according as x is a square, a non-square or zero in $\left.\mathbb{F}_{q}\right)$, and $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$. A diagonal equation over \mathbb{F}_{q} is an equation of the type

[^0]\[

$$
\begin{equation*}
a_{1} x_{1}^{d_{1}}+\cdots+a_{n} x_{n}^{d_{n}}=b \tag{1}
\end{equation*}
$$

\]

where $a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}$ and d_{1}, \ldots, d_{n} are positive integers. As x_{j} runs through all elements of $\mathbb{F}_{q}, x_{j}^{d_{j}}$ runs through the same elements as $x_{j}^{\operatorname{gcd}\left(d_{j}, q-1\right)}$ does with the same multiplicity. Therefore, without loss of generality, we may assume that d_{j} divides $q-1$ for all j. Denote by $N\left[a_{1} x_{1}^{d_{1}}+\cdots+a_{n} x_{n}^{d_{n}}=b\right]$ the number of solutions to (1) in \mathbb{F}_{q}^{n}.

The pioneering work on diagonal equations has been done by Weil [14], who expressed the number of solutions in terms of Gauss sums. For certain choices of coefficients a_{1}, \ldots, a_{n}, b, exponents d_{1}, \ldots, d_{n} and finite fields \mathbb{F}_{q}, the explicit formulas for the number of solutions can be deduced from Weil's expression, see [3,4,6,8,10-13,15,16] for some results in this direction. However, in general, it is a difficult task to determine $N\left[a_{1} x_{1}^{d_{1}}+\cdots+a_{n} x_{n}^{d_{n}}=b\right]$.

In this paper, we consider a diagonal equation of the form

$$
\begin{equation*}
x_{1}^{2^{m}}+\cdots+x_{n}^{2^{m}}=0 \tag{2}
\end{equation*}
$$

where m is a positive integer with $2^{m} \mid(q-1)$. It is well known (see [4, Theorem 10.5.1] or (10, Theorems 6.26 and 6.27]) that

$$
N\left[x_{1}^{2}+\cdots+x_{n}^{2}=0\right]= \begin{cases}q^{n-1}+\eta\left((-1)^{n / 2}\right) q^{(n-2) / 2}(q-1) & \text { if } n \text { is even } \\ q^{n-1} & \text { if } n \text { is odd }\end{cases}
$$

Moreover, if $p \equiv 3(\bmod 4)$ and $2 \mid s$, then it follows from the result of Wolfmann [15, Corollary 4] that

$$
N\left[x_{1}^{4}+\cdots+x_{n}^{4}=0\right]=q^{n-1}+(-1)^{((s / 2)-1) n} q^{(n-2) / 2}(q-1) \cdot \frac{3^{n}+(-1)^{n} \cdot 3}{4}
$$

Further, for any m with $2^{m} \mid(q-1)$, it is not hard to show that

$$
N\left[x_{1}^{2^{m}}+x_{2}^{2^{m}}=0\right]= \begin{cases}2^{m}(q-1)+1 & \text { if } 2^{m+1} \mid(q-1) \\ 1 & \text { if } 2^{m} \|(q-1)\end{cases}
$$

The goal of this paper is to determine explicitly $N\left[x_{1}^{2^{m}}+\cdots+x_{n}^{2^{m}}=0\right]$ for an arbitrary n in the case when $p \equiv \pm 3(\bmod 8)$ and

$$
m \geq\left\{\begin{array}{ll}
3 & \text { if } p \equiv 3 \quad(\bmod 8) \\
2 & \text { if } p \equiv-3
\end{array} \quad(\bmod 8) .\right.
$$

In Section 3, we treat the case $p \equiv 3(\bmod 8)$. The main results of this section are Theorems 18 and 19, in which we cover the cases $2^{m+1} \mid(q-1)$ and $2^{m} \|(q-1)$, respectively. Our main results in Section 4 are Theorems 22 and 23, in which we deal with the case $p \equiv-3(\bmod 8)$. All of the evaluations in Sections 3 and 4 are effected in

https://daneshyari.com/en/article/4582677

Download Persian Version:
https://daneshyari.com/article/4582677

Daneshyari.com

[^0]: E-mail address: jbaulina@mail.ru.
 http://dx.doi.org/10.1016/j.ffa.2016.04.005
 1071-5797/® 2016 Elsevier Inc. All rights reserved.

