

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Quasi-twisted codes with constacyclic constituent codes

Minjia Shi a,b,c,*, Yiping Zhang d

- ^a Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, No. 3 Feixi Road, Hefei, Anhui, 230039 China
- ^b School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, China
- $^{\mathrm{c}}$ National Mobile Communications Research Laboratory, Southeast University, China
- ^d School of Wendian, Anhui University, Hefei, Anhui, 230601, China

ARTICLE INFO

Article history:
Received 19 May 2015
Received in revised form 7 January 2016

Accepted 8 January 2016 Available online 1 February 2016 Communicated by W. Cary Huffman

MSC: 94A15 94B20 94B60

Keywords: Quasi-twisted codes λ -Circulant matrices Generator polynomials

ABSTRACT

Quasi-twisted codes are generalizations of the familiar linear quasi-cyclic codes. In this paper, an algebraic method is used to investigate the relationship between quasi-twisted codes and constacyclic codes. Moreover, a generator polynomial of a quasi-twisted code with constacyclic constituent codes is given. Meanwhile, the conditions for a quasi-twisted code $\mathscr C$ of index ℓ and length ℓm to be equivalent to a constacyclic code of length ℓm are obtained. Finally, some examples are presented to illustrate the discussed results.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: smjwcl.good@163.com (M. Shi), yipingzhang0123@163.com (Y. Zhang).

 $^{^*}$ Corresponding author at: School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, China.

1. Introduction

Quasi-twisted codes over finite fields form an important class of block codes that include constacyclic codes [3] and quasi-cyclic codes as special cases. Recently, quasi-twisted codes were studied in [1,5,8,9]. In [7], Ling and Solé viewed each quasi-cyclic code as a code over a polynomial ring, and extracted a description of each quasi-cyclic code as a direct sum of linear codes of shorter lengths over larger fields. These codes are called the constituent codes of the quasi-cyclic code in question. In [2], quasi-cyclic codes of length 5ℓ and index ℓ over \mathbb{F}_q were obtained from a pair of codes over, respectively, \mathbb{F}_q and \mathbb{F}_{q^4} , by a combinatorial construction called there the quintic construction. They are shown to be cyclic when the constituent codes are cyclic of odd length coprime to 5. In [6], Lim considered the same problem for quasi-cyclic codes of general index. In [4], Güneri and Özbudak also considered the same case. If the constituent codes of a quasi-cyclic code $\mathscr C$ of length $m\ell$ and index ℓ are cyclic, they proved that $\mathscr C$ can be viewed as a 2-D cyclic code of size $m \times \ell$ over $\mathbb F_q$. Moreover, in case that m and ℓ are also coprime to each other, $\mathscr C$ must be equivalent to a cyclic code.

In view of the analogy between cyclic and constacyclic codes on one hand and quasi-cyclic and quasi-twisted codes on the other hand, a natural question is to characterize quasi-twisted codes with constacyclic constituent codes. In this paper, we will apply an algebraic method to solve this problem and give the conditions that a quasi-twisted code is equivalent to a constacyclic code.

The material is organized as follows. The next section introduces a decomposition of constacyclic codes under the constashift. Section 3 considers the special class of quasitwisted codes with constacyclic constituent codes. Section 4 considers the generator polynomial of the equivalent constacyclic code. Section 5 contains numerical examples. Section 6 concludes the paper.

2. The λ -circulant set decomposition of a λ -constacyclic code

Throughout this paper we require that $(m,q)=(\ell,q)=(m,\ell)=1$ and $\lambda^{\ell+m-1}=1$, where $\lambda\in\mathbb{F}_q^*$, $q=p^k$ for some positive integer k and p is a prime number. An $[n,k]_q$ code C is called λ -constacyclic if for each codeword $\mathbf{c}=(a_0,a_1,a_2,\ldots,a_{n-1})\in C$, and $\lambda\in\mathbb{F}_q^*$, the vector $(\lambda a_{n-1},a_0,a_1,\ldots,a_{n-2})\in C$. In this section, we require that (n,q)=1.

Definition 1. Let $\lambda \in \mathbb{F}_q^*$, and let C be a λ -constacyclic code of length n over \mathbb{F}_q , then a λ -circulant matrix A containing the codeword $(a_0, a_1, \ldots, a_{n-1})$ is defined as follows:

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} \\ \lambda a_{n-1} & a_0 & a_1 & \dots & a_{n-2} \\ \lambda a_{n-2} & \lambda a_{n-1} & a_0 & \dots & a_{n-3} \\ \dots & \dots & \dots & \dots \\ \lambda a_1 & \lambda a_2 & \lambda a_3 & \dots & a_0 \end{pmatrix}.$$

Note that the row vectors of A are codewords of C.

Download English Version:

https://daneshyari.com/en/article/4582689

Download Persian Version:

https://daneshyari.com/article/4582689

<u>Daneshyari.com</u>