Concatenated structure of left dihedral codes

Yonglin Cao ${ }^{\text {a,* }}$, Yuan Cao ${ }^{\text {b }}$, Fang-Wei $\mathrm{Fu}^{\text {c }}$
${ }^{\text {a }}$ School of Sciences, Shandong University of Technology, Zibo, Shandong 255091, China
${ }^{\mathrm{b}}$ College of Mathematics and Econometrics, Hunan University, Changsha 410082, China
${ }^{\text {c }}$ Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

A R T I C L E I N F O

Article history:

Received 6 March 2015
Received in revised form 26
November 2015
Accepted 3 January 2016
Available online 11 January 2016
Communicated by W. Cary Huffman

$M S C$:

94B05
94B15
11T71

Keywords:

Left dihedral code
Skew cyclic code
Concatenated structure
Cyclic code
Dual code
Self-dual code

Abstract

Let $D_{2 n}$ be the dihedral group of order n. Left ideals of the group algebra $\mathbb{F}_{q} D_{2 n}$ are known as left dihedral codes over \mathbb{F}_{q} of length $2 n$, and abbreviated as left $D_{2 n}$-codes. In this paper, a system theory for left $D_{2 n}$-codes is developed only using finite field theory and basic theory of cyclic codes and skew cyclic codes. First, we prove that any left $D_{2 n}$-code is a direct sum of concatenated codes with inner codes \mathcal{A}_{i} and outer codes C_{i}, where \mathcal{A}_{i} is a minimal self-reciprocal cyclic code over \mathbb{F}_{q} of length n and C_{i} is a skew cyclic code of length 2 over an extension field or principal ideal ring of \mathbb{F}_{q}. Then for the case of $\operatorname{gcd}(n, q)=1$, we give a precise description for outer codes in the concatenated codes, provide the dual code for any left $D_{2 n}$-code and determine all self-dual left $D_{2 n}$-codes. Moreover, all 1995 binary left dihedral codes and all 255 binary self-dual left dihedral codes of length 30 are given, and a class of left $D_{2 p^{n} \text {-codes over }} \mathbb{F}_{q}$ is investigated.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let \mathbb{F}_{q} be a finite field of cardinality q and $D_{2 n}=\left\langle x, y \mid x^{n}=1, y^{2}=1, y x y=x^{-1}\right\rangle$ the dihedral group of order n. The group algebra $\mathbb{F}_{q} D_{2 n}$ is a vector space over \mathbb{F}_{q} with basis $D_{2 n}$. In addition, multiplication with scalars $c \in \mathbb{F}_{q}$ and multiplication are defined by: for any $a_{g}, b_{g} \in \mathbb{F}_{q}$ where $g \in D_{2 n}$,

$$
\begin{aligned}
\sum_{g \in D_{2 n}} a_{g} g+ & \sum_{g \in D_{2 n}} b_{g} g=\sum_{g \in D_{2 n}}\left(a_{g}+b_{g}\right) g, c\left(\sum_{g \in D_{2 n}} a_{g} g\right)=\sum_{g \in D_{2 n}} c a_{g} g \\
& \left(\sum_{g \in D_{2 n}} a_{g} g\right)\left(\sum_{g \in D_{2 n}} b_{g} g\right)=\sum_{g \in D_{2 n}}\left(\sum_{u v=g} a_{u} b_{v}\right) g
\end{aligned}
$$

Then $\mathbb{F}_{q} D_{2 n}$ is an associative and noncommutative \mathbb{F}_{q}-algebra with identity $1=1_{\mathbb{F}_{q}} 1_{D_{2 n}}$ where $1_{\mathbb{F}_{q}}$ and $1_{D_{2 n}}$ are the identity elements of \mathbb{F}_{q} and $D_{2 n}$ respectively. Readers are referred to [12] for more details on group algebra.

For any $\mathbf{a}=\left(a_{0,0}, a_{1,0}, \ldots, a_{n-1,0}, a_{0,1}, a_{1,1}, \ldots, a_{n-1,1}\right) \in \mathbb{F}_{q}^{2 n}$, we define

$$
\Psi(\mathbf{a})=\left(1, x, \ldots, x^{n-1}\right) M_{\mathbf{a}}\binom{1}{y}, \text { where } M_{\mathbf{a}}=\left(\begin{array}{cc}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1} \\
\ldots & \ldots \\
a_{n-1,0} & a_{n-1,1}
\end{array}\right)
$$

Then Ψ is an \mathbb{F}_{q}-linear isomorphism from $\mathbb{F}_{q}^{2 n}$ onto $\mathbb{F}_{q} D_{2 n}$. As in [8], a nonempty subset C of $\mathbb{F}_{q}^{2 n}$ is called a left dihedral code (or left $D_{2 n}$-code more precisely) over \mathbb{F}_{q} if $\Psi(C)$ is a left ideal of the \mathbb{F}_{q}-algebra $\mathbb{F}_{q} D_{2 n}$. As usual, we will identify C with $\Psi(C)$ in this paper.

Dutra et al. [7] investigated codes that are given as two-sided ideals in a semisimple finite group algebra $\mathbb{F}_{q} G$ defined by idempotents constructed from subgroups of a finite group G, and gave a criterion to decide when these ideals are all the minimal two-sided ideals of $\mathbb{F}_{q} G$ in the case when G is a dihedral group. McLoughlin [11] provided a new construction of the self-dual, doubly-even and extremal [48,24,12] binary linear block code using a zero divisor in the group ring $\mathbb{F}_{2} D_{48}$.

Recently, Brochero Martínez [6] showed explicitly all central irreducible idempotents and their Wedderburn decomposition of the dihedral group algebra $\mathbb{F}_{q} D_{2 n}$, in the case when every divisor of n divides $q-1$. This characterization depends to the relation of the irreducible idempotents of the cyclic group algebra $\mathbb{F}_{q} C_{n}$ and the central irreducible idempotents of the group algebras $\mathbb{F}_{q} D_{2 n}$. Gabriela and Inneke [8] provided algorithms to construct minimal left group codes. These are based on results describing a complete set of orthogonal primitive idempotents in each Wedderburn component of a semisimple finite group algebra $\mathbb{F}_{q} G$ for a large class of groups G.

More importantly, Bazzi and Mitter [1] showed that for infinitely many block lengths a random left ideal in the binary group algebra of the dihedral group is an asymptotically

https://daneshyari.com/en/article/4582705

Download Persian Version:

https://daneshyari.com/article/4582705

Daneshyari.com

[^0]: * Corresponding author. Fax: +86 05332782308.

 E-mail addresses: ylcao@sdut.edu.cn (Y. Cao), yuan_cao@hnu.edu.cn (Y. Cao), fwfu@nankai.edu.cn (F.-W. Fu).

