

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Concatenated structure of left dihedral codes

Yonglin Cao $^{\mathrm{a},*},$ Yuan Cao $^{\mathrm{b}},$ Fang-Wei Fu $^{\mathrm{c}}$

^a School of Sciences, Shandong University of Technology, Zibo, Shandong 255091, China

^b College of Mathematics and Econometrics, Hunan University, Changsha 410082,

^c Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

0.0000

ARTICLE INFO

Article history: Received 6 March 2015 Received in revised form 26 November 2015 Accepted 3 January 2016 Available online 11 January 2016 Communicated by W. Cary Huffman

MSC: 94B05 94B15 11T71

China

Keywords: Left dihedral code Skew cyclic code Concatenated structure Cyclic code Dual code Self-dual code

ABSTRACT

Let D_{2n} be the dihedral group of order *n*. Left ideals of the group algebra $\mathbb{F}_q D_{2n}$ are known as left dihedral codes over \mathbb{F}_q of length 2n, and abbreviated as left D_{2n} -codes. In this paper, a system theory for left D_{2n} -codes is developed only using finite field theory and basic theory of cyclic codes and skew cyclic codes. First, we prove that any left D_{2n} -code is a direct sum of concatenated codes with inner codes \mathcal{A}_i and outer codes C_i , where \mathcal{A}_i is a minimal self-reciprocal cyclic code over \mathbb{F}_q of length *n* and C_i is a skew cyclic code of length 2 over an extension field or principal ideal ring of \mathbb{F}_q . Then for the case of gcd(n,q) = 1, we give a precise description for outer codes in the concatenated codes, provide the dual code for any left D_{2n} -code and determine all self-dual left D_{2n} -codes. Moreover, all 1995 binary left dihedral codes and all 255 binary self-dual left dihedral codes of length 30 are given, and a class of left D_{2p^n} -codes over \mathbb{F}_q is investigated.

© 2016 Elsevier Inc. All rights reserved.

* Corresponding author. Fax: +86 0533 2782308.

E-mail addresses: ylcao@sdut.edu.cn (Y. Cao), yuan_cao@hnu.edu.cn (Y. Cao), fwfu@nankai.edu.cn (F.-W. Fu).

1. Introduction

Let \mathbb{F}_q be a finite field of cardinality q and $D_{2n} = \langle x, y \mid x^n = 1, y^2 = 1, yxy = x^{-1} \rangle$ the dihedral group of order n. The group algebra $\mathbb{F}_q D_{2n}$ is a vector space over \mathbb{F}_q with basis D_{2n} . In addition, multiplication with scalars $c \in \mathbb{F}_q$ and multiplication are defined by: for any $a_g, b_g \in \mathbb{F}_q$ where $g \in D_{2n}$,

$$\sum_{g \in D_{2n}} a_g g + \sum_{g \in D_{2n}} b_g g = \sum_{g \in D_{2n}} (a_g + b_g)g, \ c(\sum_{g \in D_{2n}} a_g g) = \sum_{g \in D_{2n}} ca_g g$$
$$(\sum_{g \in D_{2n}} a_g g)(\sum_{g \in D_{2n}} b_g g) = \sum_{g \in D_{2n}} (\sum_{uv = g} a_u b_v)g.$$

Then $\mathbb{F}_q D_{2n}$ is an associative and noncommutative \mathbb{F}_q -algebra with identity $1 = 1_{\mathbb{F}_q} 1_{D_{2n}}$ where $1_{\mathbb{F}_q}$ and $1_{D_{2n}}$ are the identity elements of \mathbb{F}_q and D_{2n} respectively. Readers are referred to [12] for more details on group algebra.

For any $\mathbf{a} = (a_{0,0}, a_{1,0}, \dots, a_{n-1,0}, a_{0,1}, a_{1,1}, \dots, a_{n-1,1}) \in \mathbb{F}_q^{2n}$, we define

$$\Psi(\mathbf{a}) = (1, x, \dots, x^{n-1}) M_{\mathbf{a}} \begin{pmatrix} 1 \\ y \end{pmatrix}, \text{ where } M_{\mathbf{a}} = \begin{pmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \\ \dots & \dots \\ a_{n-1,0} & a_{n-1,1} \end{pmatrix}.$$

Then Ψ is an \mathbb{F}_q -linear isomorphism from \mathbb{F}_q^{2n} onto $\mathbb{F}_q D_{2n}$. As in [8], a nonempty subset C of \mathbb{F}_q^{2n} is called a *left dihedral code* (or *left D*_{2n}-code more precisely) over \mathbb{F}_q if $\Psi(C)$ is a left ideal of the \mathbb{F}_q -algebra $\mathbb{F}_q D_{2n}$. As usual, we will identify C with $\Psi(C)$ in this paper.

Dutra et al. [7] investigated codes that are given as two-sided ideals in a semisimple finite group algebra $\mathbb{F}_q G$ defined by idempotents constructed from subgroups of a finite group G, and gave a criterion to decide when these ideals are all the minimal two-sided ideals of $\mathbb{F}_q G$ in the case when G is a dihedral group. McLoughlin [11] provided a new construction of the self-dual, doubly-even and extremal [48, 24, 12] binary linear block code using a zero divisor in the group ring $\mathbb{F}_2 D_{48}$.

Recently, Brochero Martínez [6] showed explicitly all central irreducible idempotents and their Wedderburn decomposition of the dihedral group algebra $\mathbb{F}_q D_{2n}$, in the case when every divisor of n divides q - 1. This characterization depends to the relation of the irreducible idempotents of the cyclic group algebra $\mathbb{F}_q C_n$ and the central irreducible idempotents of the group algebras $\mathbb{F}_q D_{2n}$. Gabriela and Inneke [8] provided algorithms to construct minimal left group codes. These are based on results describing a complete set of orthogonal primitive idempotents in each Wedderburn component of a semisimple finite group algebra $\mathbb{F}_q G$ for a large class of groups G.

More importantly, Bazzi and Mitter [1] showed that for infinitely many block lengths a random left ideal in the binary group algebra of the dihedral group is an asymptotically Download English Version:

https://daneshyari.com/en/article/4582705

Download Persian Version:

https://daneshyari.com/article/4582705

Daneshyari.com