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A Steiner system S(t, k,n) is a k-uniform set system on [n]
for which every t-set is covered exactly once. More generally,
a partial Steiner system P(t, k,n) is a k-uniform set system
on [n] where every t-set is covered at most once. Let g be a
prime power. Using circle geometries and field-based block
spreading, we give an explicit embedding for any partial
Steiner system P(3,q + 1,n) into a Steiner system S(3,q +
1,¢™ + 1) for some m = m(q, n).
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1. Introduction

Let t < k < n be nonnegative integers. A partial Steiner system P(t,k,n) is an
n-element set of points equipped with a family B of k-element subsets, called blocks,
such that every t-element subset of points is contained in at most one block. We may
assume that the ground set is [n] := {1,...,n} so that B C ([Z]), the set of all k-subsets
of [n].

In a P(t,k,n), a t-set T € ([?]) is covered by B (or simply covered) if there exists a
block B € B with B D T'. When context is clear, we use T to denote the t-sets covered
by B. If every t-set is covered — that is, if T = ([?]) — we obtain a Steiner system.
Steiner systems with ¢ = 1 are simply uniform partitions. The case ¢ = 2 is connected
with (pairwise balanced) block designs and finite geometries, and already there are some
deep questions on the existence of S(2,k,n). For Steiner systems with general ¢, there
is an exciting preprint by Peter Keevash [11] which announces a randomized algebraic
construction. Until this, very little had been known for ¢ > 2. Indeed, the only nontrivial
infinite families explicitly known have t = 3 and k = g + 1, ¢ a prime power. These are
seeded by Witt’s classical ‘circle geometries’ [22].

Fact 1.1. For any prime power ¢ > 1, there is an S(3,¢q + 1,¢% + 1) for all d > 1.

Such a construction is furnished by the action of PGL(2, ¢%) on a copy of F, U {co} in
its natural containment in Fa U {oo}. With the exception of the new asymptotic results
n [11], there are no known nontrivial S(3,k,n) for & — 1 not a prime power. The same
goes for nontrivial S(t, k,n) for ¢ > 5.

A partial Steiner system B on [n] is a subsystem of or is embedded in another C on [m]
if n < m and B C C. A natural question is whether a given P(t, k,n) can be embedded
in some S(t,k,m). Even for ¢t = 2, this problem has a rich history. In 1971, Treash [17]
obtained a general embedding for a partial Steiner triple system P(2,3,n) in a Steiner
triple system S(2,3,m) for some m < 4™. In 1977, Lindner [12] conjectured that any
partial Steiner triple system of order n has an embedding in a Steiner triple system of
order m if m = 1,3 (mod 6) and m > 2n + 1. The congruence is necessary and the
inequality is sharp; these come from basic counting. Recently Bryant and Horsley [4]
settled Lindner’s conjecture in the affirmative.

Ganter [6] and Quackenbush [16] discussed the finite embedding problem for partial
Steiner systems P (2, k,n) with k = ¢+ 1 and g, respectively, for ¢ a prime power. Finally,
Ganter [7] showed that any partial Steiner system P(2, k, n) can be embedded in a Steiner
system S(2,k,m). This work has been refined and extended in various ways. Wilson’s
asymptotic theory [20] on graph decompositions is a generalization. Vu [18] established
a lower bound on the number of non-isomorphic such embeddings. Colbourn et al. [5]
considered embeddings of more general block designs.
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