A characterization of translation ovals in finite even order planes

S.G. Barwick *, Wen-Ai Jackson
School of Mathematics, University of Adelaide, Adelaide 5005, Australia

A R T I C L E I N F O

Article history:

Received 11 April 2014
Received in revised form 30 October 2014
Accepted 5 November 2014
Available online 1 December 2014
Communicated by Olga Polverino

$M S C$:

51E20
Keywords:
Finite projective geometry
Bruck-Bose representation
Conics
Translation ovals
Characterization

A B S T R A C T
In this article we consider a set \mathcal{C} of points in $\mathrm{PG}(4, q), q$ even,
satisfying certain combinatorial properties with respect to the
planes of $\mathrm{PG}(4, q)$. We show that there is a regular spread
in the hyperplane at infinity, such that in the corresponding
Bruck-Bose plane PG(2, $\left.q^{2}\right)$, the points corresponding to \mathcal{C}
form a translation hyperoval, and conversely.
Crown Copyright © 2014 Published by Elsevier Inc.
All rights reserved.

1. Introduction

In this article we first consider a non-degenerate conic in $\operatorname{PG}\left(2, q^{2}\right), q$ even. We look at the corresponding point set in the Bruck-Bose representation in $\operatorname{PG}(4, q)$, and study its combinatorial properties (details of the Bruck-Bose representation are given in Section 2). Some properties of this set were investigated in [4]. In this article we are interested

[^0]in combinatorial properties relating to planes of $\mathrm{PG}(4, q)$. We consider a set of points in $\operatorname{PG}(4, q)$ satisfying certain of these combinatorial properties and find that the points correspond to a translation oval in the Bruck-Bose plane $\mathrm{PG}\left(2, q^{2}\right)$.

In [3], the case when q is odd is considered, and we show that given a set of points in $\mathrm{PG}(4, q)$ satisfying the following combinatorial properties, we can reconstruct the conic in $\operatorname{PG}\left(2, q^{2}\right)$. We use the following terminology in $\operatorname{PG}(4, q)$: if the hyperplane at infinity is denoted Σ_{∞}, then we call the points of $\operatorname{PG}(4, q) \backslash \Sigma_{\infty}$ affine points.

Theorem 1.1. (See [3].) Let Σ_{∞} be the hyperplane at infinity in $\mathrm{PG}(4, q), q \geq 7, q$ odd. Let \mathcal{C} be a set of q^{2} affine points, called \mathcal{C}-points, and suppose there exists a set of planes called \mathcal{C}-planes satisfying the following properties:

1. Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
2. Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
3. The affine points of $\operatorname{PG}(4, q)$ are of three types: points of \mathcal{C}; points on no \mathcal{C}-plane; and points on exactly two \mathcal{C}-planes.
4. If a plane meets \mathcal{C} in more than four points, it is a \mathcal{C}-plane.

Then there exists a unique spread \mathcal{S} in Σ_{∞} so that in the Bruck-Bose translation plane $\mathcal{P}(\mathcal{S})$, the \mathcal{C}-points form a q^{2}-arc of $\mathcal{P}(\mathcal{S})$. Moreover, the spread \mathcal{S} is regular, and so $\mathcal{P}(\mathcal{S}) \cong \mathrm{PG}\left(2, q^{2}\right)$, and the q^{2}-arc can be completed to a conic of $\mathrm{PG}\left(2, q^{2}\right)$.

The case when q is even is more complex. The combinatorial properties only allow us to reconstruct a translation oval in $\mathrm{PG}\left(2, q^{2}\right)$. The main result of this article is the following theorem.

Theorem 1.2. Consider $\operatorname{PG}(4, q), q$ even, $q>2$, with the hyperplane at infinity denoted by Σ_{∞}. Let \mathcal{C} be a set of q^{2} affine points, called \mathcal{C}-points and consider a set of planes called \mathcal{C}-planes which satisfies the following:
(A1) Each \mathcal{C}-plane meets \mathcal{C} in a q-arc.
(A2) Any two distinct \mathcal{C}-points lie in a unique \mathcal{C}-plane.
(A3) The affine points that are not in \mathcal{C} lie on exactly one \mathcal{C}-plane.
(A4) Every plane which meets \mathcal{C} in at least three points either meets \mathcal{C} in exactly four points or is a \mathcal{C}-plane.

Then there exists a regular spread \mathcal{S} in Σ_{∞} such that in the Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong$ $\operatorname{PG}\left(2, q^{2}\right)$, the \mathcal{C}-points, together with two extra points on ℓ_{∞}, form a translation hyperoval of $\mathrm{PG}\left(2, q^{2}\right)$.

We begin in Section 2 with the necessary background material on the Bruck-Bose representation. In Section 3 we investigate combinatorial properties of conics and translation

https://daneshyari.com/en/article/4582712

Download Persian Version:

https://daneshyari.com/article/4582712

Daneshyari.com

[^0]: * Corresponding author. Fax: +6188313 3696.

 E-mail address: susan.barwick@adelaide.edu.au (S.G. Barwick).

