

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

A probabilistic approach to value sets of polynomials over finite fields \hat{z}

FINITE FIELDS

Zhicheng Gao, Qiang Wang ∗

School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

A R T I C L E I N F O A B S T R A C T

Article history: Received 7 August 2014 Accepted 3 December 2014 Available online 9 January 2015 Communicated by Gary L. Mullen

MSC: 05A16 60E05 11T06

Keywords: Polynomials Value sets Normal distribution Finite fields

In this paper we study the distribution of the size of the value set for a random polynomial with a prescribed index *l* | (*q* − 1) over a finite field \mathbb{F}_q , through the study of a random *r*-th order cyclotomic mapping with index ℓ . We obtain the exact probability distribution of the value set size and show that the number of missing cosets (values) tends to a normal distribution as ℓ goes to infinity. A variation on the size of the union of some random sets is also considered.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_q be the finite field of *q* elements with characteristic *p*. Let γ be a fixed primitive element of \mathbb{F}_q throughout the paper. The *value set* of a polynomial g over \mathbb{F}_q is the set V_q of images when we view g as a mapping from \mathbb{F}_q to itself. Clearly g is a permutation

* Corresponding author. Fax: $+1$ 613 520 3536. *E-mail addresses:* zgao@math.carleton.ca (Z. Gao), wang@math.carleton.ca (Q. Wang).

[✩] Research of authors was partially supported by NSERC of Canada.

polynomial (PP) of \mathbb{F}_q if and only if the cardinality $|V_q|$ of the value set V_q is *q*. Asymptotic formulas such as $|V_g| = \lambda(g)q + O(q^{1/2})$, where $\lambda(g)$ is a constant depending only on certain Galois groups associated to *g*, can be found in Birch and Swinnerton-Dyer [\[3\]](#page--1-0) and Cohen [\[9\].](#page--1-0) Later, Williams [\[27\]](#page--1-0) proved that almost all polynomials *g* of degree *d* satisfy $\lambda(g) = 1 - \frac{1}{2!} + \frac{1}{3!} + \cdots + (-1)^{d-1} \frac{1}{d!}$.

There are also several results on explicit upper bound for $|V_g|$ if *g* is not a PP over \mathbb{F}_q ; see for example [\[16,22,23\].](#page--1-0) Perhaps the most well-known result is due to Wan [\[23\]](#page--1-0) who proved that if a polynomial *g* of degree *d* is not a PP then

$$
|V_g| \le q - \frac{q-1}{d}.\tag{1}
$$

On the other hand, it is easy to see that $|V_q| \geq [q/d]$ for any polynomial g over \mathbb{F}_q with degree *d*. The polynomials achieving this lower bound are called *minimal value set polynomials*. The classification of minimal value set polynomials over \mathbb{F}_{p^k} with $k \leq 2$ can be found in [\[7,17\],](#page--1-0) and in [\[4\]](#page--1-0) for all the minimal value set polynomials in $\mathbb{F}_q[x]$ whose value set is a subfield of \mathbb{F}_q . See [\[11,24\]](#page--1-0) for further results on lower bounds of $|V_q|$ and [\[15\]](#page--1-0) for some classes of polynomials with small value sets. More recently, algorithms and complexity in computing $|V_q|$ have been studied in [\[8\].](#page--1-0) For a recent survey on value sets of polynomials over finite fields, we refer the readers to Section 8.3 in [\[18\].](#page--1-0)

We note that all of these previous results mentioned above relate $|V_q|$ to the degree *d* of *g*. It is also well known that every polynomial *g* over \mathbb{F}_q such that $g(0) = b$ has the form $ax^r f(x^s) + b$ with some positive integers *r*, *s* such that $s \mid (q-1)$. There are different ways to choose r, s in the form $ax^r f(x^s) + b$. However, in [\[1\],](#page--1-0) the concept of the index of a polynomial was first introduced and any non-constant polynomial $g \in \mathbb{F}_q[x]$ of degree $\leq q-1$ can be written *uniquely* as $g(x) = a(x^r f(x^{(q-1)/\ell})) + b$ with index ℓ defined below. Namely, write

$$
g(x) = a(x^{n} + a_{n-i_1}x^{n-i_1} + \cdots + a_{n-i_k}x^{n-i_k}) + b,
$$

where $a, a_{n-i_j} \neq 0, j = 1, \ldots, k$. The case that $k = 0$ is trivial. Thus, we shall assume that $k \geq 1$. Write $n - i_k = r$, the vanishing order of x at 0 (i.e., the lowest degree of x in $g(x) - b$ is r). Then $g(x) = a(x^r f(x^{(q-1)/\ell})) + b$, where $f(x) = x^{e_0} + a_{n-i_1}x^{e_1} + \cdots$ $a_{n-i_{k-1}}x^{e_{k-1}} + a_r,$

$$
\ell = \frac{q-1}{\gcd(n-r, n-r-i_1, \ldots, n-r-i_{k-1}, q-1)} := \frac{q-1}{s},
$$

and $gcd(e_0, e_1, \ldots, e_{k-1}, \ell) = 1$. The integer $\ell = \frac{q-1}{s}$ is called the *index* of $g(x)$. From the above definition of index ℓ , one can see that the greatest common divisor condition makes ℓ minimal among those possible choices.

Clearly, the study of the value set of *g* over \mathbb{F}_q is equivalent to studying the value set $x^r f(x^{(q-1)/\ell})$ over \mathbb{F}_q with index ℓ . Recently Mullen, Wan and Wang [\[20\]](#page--1-0) used an index

Download English Version:

<https://daneshyari.com/en/article/4582720>

Download Persian Version:

<https://daneshyari.com/article/4582720>

[Daneshyari.com](https://daneshyari.com)