Existence of canonically inherited arcs in Moulton planes of odd order ${ }^{2+}$

Angelo Sonnino
Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy

A R T I C L E I N F O

Article history:

Received 29 April 2014
Received in revised form 25
November 2014
Accepted 28 November 2014
Available online 14 January 2015
Communicated by Olga Polverino

MSC:

51A35
51E15
Keywords:
Moulton plane
Affine space
k-Arc
Oval
Curve
Algebraic set

A B S T R A C T

We address the problem of determining the spectrum of all possible values of k for canonically inherited k-arcs in Moulton planes of odd order q^{2}, with $q \equiv 3(\bmod 4)$, arising from hyperbole in $\operatorname{AG}\left(2, q^{2}\right)$.
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

An arc of size k (briefly, a k-arc) in a finite projective plane π of order $q=p^{h}$ is a set consisting of k points of π with the property that no three of them are collinear. A k-arc is said to be complete if it is not contained in a $(k+1)$-arc. Throughout this paper q is an odd prime power.

The upper bound on the number of points a k-arc can contain is $q+1$. A $(q+1)$-arc is called an oval, and examples of ovals in the Desarguesian projective plane $\operatorname{PG}(2, q)$ are the irreducible conics; see [13].

Concerning complete k-arcs which are different from ovals, the following upper bounds on the number of points are known; see for instance [6,7,9,13-15,33-36].

- $k \leq q-\frac{\sqrt{q}}{2}+\frac{5}{2}$;
- $k \leq \frac{44}{45} q+\frac{8}{9}$ if q is a prime.

Arcs different from conics, but sharing as many points as possible with conics, were also studied in [5,14,22,23].

Currently, k-arcs in the Desarguesian projective plane $\mathrm{PG}(2, q)$ have been investigated, not only from a theoretical point of view, but also for their natural applications to coding theory and cryptography; see for instance [11,12,17,18,21,27,28,32].

No q-arc in $\operatorname{PG}(2, q)$ can be complete; this fact was proven by B. Segre $[25,26]$ for q odd, and by G. Tallini [31] for q even. Further, it has been conjectured that in $\operatorname{PG}(2, q)$ no $(q-1)$-arc is complete for $q>13$. This problem has been recently addressed by M. Giulietti and G. Korchmáros who showed that if a complete $(q-1)$-arc in $\mathrm{PG}(2, q)$ with $q>13$ exists, then it must have some particular geometrical features concerning intersection with conics and automorphisms; see [10, Section 7].

In [4] constructions of complete arcs in $\mathrm{PG}(2, q)$ are proposed. These constructions form families of k-arcs of all sizes k in an interval $k_{\min } \leq k \leq k_{\max }$ where $k_{\min }$ is of order $\frac{1}{3} q$ or $\frac{1}{4} q$ while $k_{\text {max }}$ has order $\frac{1}{2} q$.

However, these results are not true in general, when the projective plane could be non-Desarguesian. G. Menichetti [24] constructed an infinite family of complete q-arcs in Hall planes of even order. R.H.F. Denniston [8] and A. Barlotti [3] exhibited examples of complete 9 -arcs in non-Desarguesian projective planes of order 9. T. Szőnyi [29] provided constructions for complete $(q-1)$-arcs in the Hall plane of odd order $q>49$ and for complete arcs having $k \geq \frac{2}{3} q$ points in André planes of square order. Further, T. Szőnyi [30] showed that the set of rational numbers $\frac{k}{q}$ such that there exists a complete k-arc in some projective plane of order q is dense in the interval $[0,1]$.

Generally speaking, every affine plane α of order $q=p^{h}$ can be regarded as an alteration of the Desarguesian plane AG $(2, q)$. Points and lines of α are usually identified with those of $\mathrm{AG}(2, q)$, but some point-line incidences in $\mathrm{AG}(2, q)$ are altered in order to obtain the point-line incidences of α.

https://daneshyari.com/en/article/4582722

Download Persian Version:
https://daneshyari.com/article/4582722

Daneshyari.com

[^0]: 侦 This work was performed within the activity of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) of the Italian INdAM, and partially supported by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) within the PRIN project No. 2012XZE22K_006 entitled "Strutture Geometriche, Combinatoria e loro Applicazioni".

 E-mail address: angelo.sonnino@unibas.it.

