

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Permutation and complete permutation polynomials

L.A. Bassalygo, V.A. Zinoviev*

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, GSP-4, 127994, Russia

ARTICLE INFO

Article history: Received 22 April 2014 Received in revised form 6 November 2014 Accepted 11 November 2014 Available online 14 January 2015 Communicated by Rudolf Lidl

MSC: 11T06 11T71 12Y05

Keywords: Finite field Permutation polynomial Complete permutation polynomial Exponential sum

1. Introduction

The interest to a special case of the permutation polynomials – the complete permutation polynomials – has recently reappeared. A permutation polynomial f(x) over a finite field \mathbb{F}_q is called a *complete permutation polynomial* (see [2,6,9,11]), or a *complete*

* Corresponding author.

ABSTRACT

Polynomials of type $x^{q+2} + bx$ over the field \mathbb{F}_{q^2} and of type $x^{q^2+q+2} + bx$ over \mathbb{F}_{q^3} , where $q = p^m > 2$ is a power of a prime p are considered. All cases when these polynomials are permutation polynomials are classified. Therefore, all cases when the polynomials $b^{-1}x^{q+2}$ over \mathbb{F}_{q^2} and $b^{-1}x^{q^2+q+2}$ over \mathbb{F}_{q^3} are the complete permutation polynomials are enumerated.

@ 2014 Published by Elsevier Inc.

E-mail addresses: bass@iitp.ru (L.A. Bassalygo), zinov@iitp.ru (V.A. Zinoviev).

mapping (see [5,7]), if f(x) + x is also a permutation polynomial. We slightly generalize this definition: a permutation polynomial f(x) over a finite field \mathbb{F}_q is called a *b*-complete permutation polynomial if f(x) + bx is also a permutation polynomial, $b \in \mathbb{F}_q^*$. Here and always later $b \neq 0$. Clearly, if f(x) is a *b*-complete permutation polynomial then $b^{-1}f(x)$ is a complete permutation polynomial. Note that all complete permutation polynomials of degree at most 5 are listed in [7] and in [3], respectively.

We need the following result of [7].

Lemma 1. (See [7].) The polynomial

$$f(x) = x^{1 + \frac{q-1}{n}} + bx, \quad n|(q-1), \ n > 1,$$

over \mathbb{F}_{q} is a permutation polynomial if and only if the following conditions are satisfied:

(i) the element b is such that $(-b)^n \neq 1$;

(ii) the inequality

$$\left(\left(b+\omega^{i}\right)\left(b+\omega^{j}\right)^{-1}\right)^{\frac{q-1}{n}}\neq\omega^{j-i}$$
(1)

holds for all i, j, such that $0 \leq i < j < n$, where ω is a fixed primitive root of the nth degree of 1 in the field \mathbb{F}_q .

Here, we use this lemma for certain special cases of \mathbb{F}_q and the integer *n*. Throughout the paper, we assume that $q = p^m$, where *p* is the field characteristic and $p^m > 2$. For a field of any characteristic, we found all cases in which the polynomials $x^{q+2} + bx$ over the field \mathbb{F}_{q^2} and the polynomials $x^{q^2+q+2} + bx$ over \mathbb{F}_{q^3} are the permutation polynomials. In addition, for the fields of characteristic p = 2 and the polynomials $x^{q+2} + bx$ over \mathbb{F}_{q^2} we give another proof of the results obtained in papers [2,8], and for the polynomials x^{q^2+q+2} over \mathbb{F}_{q^3} we strengthen the previous results of [9,11] (see details below).

Thus, we answered the question of when the polynomials x^{q+2} over the fields \mathbb{F}_{q^2} and the polynomials x^{q^2+q+2} over \mathbb{F}_{q^3} are the *b*-complete permutation polynomials.¹

2. The case of polynomial $x^{q+2} + bx$

Consider the field \mathbb{F}_{q^2} and set n = q - 1. Then the condition $(-b)^n \neq 1$ implies that $b \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Set $x = \omega^i$ and $y = \omega^j$, and then the inequality (1) becomes the following inequality:

$$x(b+x)^{q+1} \neq y(b+y)^{q+1}$$

¹ The results of the paper are published without proofs in conference proceedings ACCT-2014 [1].

Download English Version:

https://daneshyari.com/en/article/4582723

Download Persian Version:

https://daneshyari.com/article/4582723

Daneshyari.com