[Finite Fields and Their Applications 36 \(2015\) 170–188](http://dx.doi.org/10.1016/j.ffa.2015.08.001)

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Bisection and squares in genus 2^{\star}

FINITE FIELDS

Josep M. Miret ^a, Jordi Pujolàs ^a*,*∗, Nicolas Thériault ^b

^a Departament de Matemàtica, Universitat de Lleida, Lleida, Spain
^b Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile

A R T I C L E I N F O A B S T R A C T

Article history: Received 16 July 2014 Received in revised form 8 August 2015 Accepted 10 August 2015 Available online 29 August 2015 Communicated by Igor Shparlinski

MSC: 11G20 11T71 14G50 14H40 14H45

Keywords: Hyperelliptic curves Genus 2 Divisor class Bisection Efficient computation

We show how to compute the pre-images of multiplicationby-2 in Jacobians of genus 2 curves $C : y^2 = f(x)$ over \mathbb{F}_q with *q* odd. We characterize $D = [u(x), v(x)] \in 2Jac(C)(\mathbb{F}_q)$ in terms of the quadratic character of $u(x)$ at the roots of $f(x)$ in imaginary models, and in terms of the quadratic character of the quotients of $u(x)$ at pairs of roots of $f(x)$ in real models. Our method reduces the problem to the computation of at most 5 square roots over the splitting field of $f(x)$ plus the solution of a system of linear equations.

© 2015 Elsevier Inc. All rights reserved.

[✩] Research of the authors was supported in part by grants MTM2013-46949-P (Spanish Ministerio de Ciencia e Innovación), 2014SGR-1666 (Generalitat de Catalunya) and FONDECYT 1151326 (Chile).

^{*} Corresponding author.

E-mail addresses: miret@matematica.udl.cat (J.M. Miret), jpujolas@matematica.udl.cat (J. Pujolàs), ntheriau@ubiobio.cl (N. Thériault).

1. Introduction

We work with divisors *D* in the Jacobian Jac(C)(\mathbb{F}_q) of a genus 2 curve C : $y^2 = f(x)$ over a finite field \mathbb{F}_q of odd characteristic by means of their usual Mumford representation, this is a pair of polynomials $[u(x), v(x)]$ such that $f(x) \equiv v(x)^2$ modulo $u(x)$, with $u(x)$ monic and $deg(v(x)) < deg(u(x)) \leq 2$ (see [\[3\]\)](#page--1-0) except if $deg(f(x)) = 6$ and the support of *D* contains some of the points at infinity, in which case $deg(u(x)) = 0, 1$ and deg $(v(x)) = 3$ (see [\[11,5\]\)](#page--1-0).

Given $D_2 = [u_2(x), v_2(x)] = [x^2 + u_{21}x + u_{20}, v_{21}x + v_{20}] \in \text{Jac}(C)(\mathbb{F}_q)$ and θ a root of $f(x)$, we prove an equivalence between the values $u_2(\theta)$ being squares and the existence of $D_1 = [u_1(x), v_1(x)] = [x^2 + u_{11}x + u_{10}, v_{11}x + v_{10}] \in \text{Jac}(C)(\mathbb{F}_q)$ such that $2D_1 = D_2$. We provide computational details not covered in [\[3\].](#page--1-0) Our contribution shows how to compute the bisections D_1 from $\sqrt{u_2(\theta)}$ (see [Theorems 2.5,](#page--1-0) 2.7, 4.7 and 4.8).

As a consequence of the final modular reduction in Cantor's divisor class reduction algorithm (see [\[2\]](#page--1-0) or [4, p. [308\]\)](#page--1-0), if D_1 is a weight 2 bisection of D_2 , both defined over \mathbb{F}_q , then there exists a linear polynomial $k(x) = k_1x + k_0 \in \mathbb{F}_q[x]$ such that $u_1^2(x)$ and the monic associate of the quotient

$$
\frac{f(x) - ((k_1x + k_0)u_2(x) - v_2(x))^2}{u_2(x)}
$$
\n(1)

are equal (see [\[7–9\]\)](#page--1-0). This means that for every $D_2 \in 2Jac(C)(\mathbb{F}_q)$ there exists a coefficient $c = c(k_1, k_0, f_0, \ldots, f_6, u_{21}, u_{20}, v_{21}, v_{20}) \in \mathbb{F}_q$ such that

$$
\frac{f(x) - ((k_1x + k_0)u_2(x) - v_2(x))^2}{u_2(x)} = c \cdot u_1^2(x).
$$
\n(2)

For (2) to hold we need $D_1 \notin \Theta = \{D \in \text{Jac}(\mathcal{C})(\mathbb{F}_q) \mid \text{deg}(u_D) \leq 1\}$. Given a bisectee D_2 , from (2) we obtain the bisections D_1 away from Θ . Any D_1 is fully defined by $u_1(x)$ and $k(x)$ since

$$
v_1(x) \equiv k(x)u_2(x) - v_2(x) \bmod u_1(x).
$$
 (3)

Because of the imbalance in degrees that would occur otherwise, $D_1 \notin \Theta$ implies $k_1 \neq 0$ if $f(x)$ has degree 5 and $k_1 \neq \pm \sqrt{f_6}$ if $f(x)$ has degree 6. Bisections $D_1 \in \Theta$ are out of reach with our method. They correspond to the values $k_1 = 0, \pm \sqrt{f_6}$ and they lie at infinity. However, one finds them at almost no cost by other means (see [\[7,8\]](#page--1-0) for example). Our method does not apply for bisectees $D_2 = \pm(\infty_1 - \infty_2)$ either, but again their bisections are found differently.

As an analogy, let $E: y^2 = g(x)$ be an elliptic curve over \mathbb{F}_q and let $Q \in E(\mathbb{F}_q)$ $E(\mathbb{F}_q)[2]$. If $P \in E(\mathbb{F}_q)$ is such that $2P = Q$, then (2) is

$$
\frac{(k_0(x - x_Q) - y_Q)^2 - g(x)}{(x_Q - x)} = (x - x_P)^2,
$$

Download English Version:

<https://daneshyari.com/en/article/4582765>

Download Persian Version:

<https://daneshyari.com/article/4582765>

[Daneshyari.com](https://daneshyari.com)