

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Polynomial maps on vector spaces over a finite field $\stackrel{\Rightarrow}{\approx}$

Michiel Kosters

Mathematisch Instituut, P.O. Box 9512, 2300 RA Leiden, The Netherlands

A R T I C L E I N F O

Article history: Received 12 June 2014 Received in revised form 12 August 2014 Accepted 13 August 2014 Available online 4 November 2014 Communicated by Rudolf Lidl

MSC: 11T06

Keywords: Finite field Map Polynomial Degree Surjectivity ABSTRACT

Let l be a finite field of cardinality q and let n be in $\mathbb{Z}_{\geq 1}$. Let $f_1, \ldots, f_n \in l[x_1, \ldots, x_n]$ not all constant and consider the evaluation map $f = (f_1, \ldots, f_n) \colon l^n \to l^n$. Set $\deg(f) = \max_i \deg(f_i)$. Assume that $l^n \setminus f(l^n)$ is not empty. We will prove

$$l^n \setminus f(l^n) | \ge \frac{n(q-1)}{\deg(f)}.$$

This improves previous known bounds. \odot 2014 Elsevier Inc. All rights reserved.

1. Introduction

The main result of [1] is the following theorem.

Theorem 1.1. Let l be a finite field of cardinality q and let n be in $\mathbb{Z}_{\geq 1}$. Let $f_1, \ldots, f_n \in l[x_1, \ldots, x_n]$ not all constant and consider the map $f = (f_1, \ldots, f_n): l^n \to l^n$. Set

^{*} This article is part of my PhD thesis written under the supervision of Hendrik Lenstra. *E-mail address:* mkosters@math.leidenuniv.nl. *URL:* http://www.math.leidenuniv.nl/mkosters.

 $\deg(f) = \max_i \deg(f_i)$. Assume that $l^n \setminus f(l^n)$ is not empty. Then we have

$$|l^n \setminus f(l^n)| \ge \min\left\{\frac{n(q-1)}{\deg(f)}, q\right\}.$$

We refer to [1] for a nice introduction to this problem including references and historical remarks. The proof in [1] relies on p-adic liftings of such polynomial maps. We give a proof of a stronger statement using different techniques.

Theorem 1.2. Under the assumptions of Theorem 1.1 we have

$$\left|l^n \setminus f(l^n)\right| \ge \frac{n(q-1)}{\deg(f)}.$$

We deduce the result (see Theorem 4.3) from the case n = 1 by putting a field structure k on l^n and relate the k-degree and the l-degree. We prove the result n = 1 in a similar way as in [2].

2. Degrees

Let l be a finite field of cardinality q and let V be a finite dimensional l-vector space. By $V^{\vee} = \operatorname{Hom}(V, l)$ we denote the dual of V. Let v_1, \ldots, v_s be a basis of V. By x_1, \ldots, x_s we denote its dual basis in V^{\vee} , that is, x_i is the map which sends v_j to δ_{ij} . Denote by $\operatorname{Sym}_l(V^{\vee})$ the symmetric algebra of V^{\vee} over l. We have an isomorphism $l[x_1, \ldots, x_s] \to \operatorname{Sym}_l(V^{\vee})$ mapping x_i to x_i . Note that $\operatorname{Map}(V, l) = l^V$ is a commutative ring under the coordinate wise addition and multiplication and it is an l-algebra. The linear map $V^{\vee} \to \operatorname{Map}(V, l)$ induces by the universal property of $\operatorname{Sym}_l(V^{\vee})$ a ring morphism $\varphi: \operatorname{Sym}_l(V^{\vee}) \to \operatorname{Map}(V, l)$. When choosing a basis, we have the following commutative diagram, where the second horizontal map is the evaluation map and the vertical maps are the natural isomorphisms:

$$\operatorname{Sym}(V^{\vee}) \xrightarrow{\varphi} \operatorname{Map}(V, l)$$

$$\uparrow \qquad \uparrow$$

$$l[x_1, \dots, x_s] \longrightarrow \operatorname{Map}(l^s, l).$$

Lemma 2.1. The map φ is surjective. After a choice of a basis as above the kernel is equal to $(x_i^q - x_i : i = 1, ..., s)$ and every $f \in \operatorname{Map}(V, l)$ has a unique representative $\sum_{m=(m_1,...,m_s): 0 \le m_i \le q-1} c_m x_1^{m_1} \cdots x_s^{m_s}$ with $c_m \in l$.

Proof. After choosing a basis, we just consider the map

$$l[x_1,\ldots,x_s] \to \operatorname{Map}(l^s,l)$$

Download English Version:

https://daneshyari.com/en/article/4582769

Download Persian Version:

https://daneshyari.com/article/4582769

Daneshyari.com