A new proof of Fitzgerald's characterization of primitive polynomials

Samrith Ram
Institut de Mathématiques de Luminy, Luminy Case 907, 13288 Marseille Cedex 9, France

A R T I C L E I N F O

Article history:

Received 5 June 2014
Received in revised form 27
September 2014
Accepted 29 September 2014
Available online 4 November 2014
Communicated by Dieter Jungnickel

MSC:

11T06
11T71
12E05
Keywords:
Irreducible polynomial
Primitive polynomial
Trace

Abstract

We give a new proof of Fitzgerald's criterion for primitive polynomials over a finite field. Existing proofs essentially use the theory of linear recurrences over finite fields. Here, we give a much shorter and self-contained proof which does not use the theory of linear recurrences.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Fitzgerald [1] gave a criterion for distinguishing primitive polynomials among irreducible ones by counting the number of nonzero coefficients in a certain quotient of polynomials. This characterization was then used to compute the minimum weight of certain binary BCH codes. Subsequently, Laohakosol and Pintoptang [2] modified and

[^0]extended the result of Fitzgerald using similar techniques and appealing to the theory of linear recurrences. Here, we prove Fitzgerald's original result by a more direct approach using elementary properties of the trace map.

2. Fitzgerald's theorem

In the following theorem, the condition $P(1) \neq 0$ is imposed to rule out the polynomial $P(x)=x+1$ which is primitive in $\mathbb{F}_{2}[x]$.

Theorem 2.1 (Fitzgerald). Let $P(x) \in \mathbb{F}_{q}[x]$ be a monic irreducible polynomial of degree k with $P(1) \neq 0$. Let $m=q^{k}-1$ and define $g(x)=\frac{\left(x^{m}-1\right)}{(x-1) P(x)}$. Then $P(x)$ is primitive if and only if $g(x)$ is a polynomial with exactly $(q-1) q^{k-1}-1$ nonzero terms.

Proof. Let $P(x)$ be as in the hypothesis of the theorem. If $P(0)=0$ then $P(x)$ cannot be primitive. So suppose $P(0) \neq 0$. Then $g(x)$ is necessarily a polynomial of degree at most $m-1$. Let $Q(x)$ be the monic reciprocal of $P(x)$ and let $Q(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right)$ be the factorization of $Q(x)$ in $\mathbb{F}_{q^{k}}[x]$. Then

$$
P(x)=a \prod_{i=1}^{k}\left(1-\alpha_{i} x\right)
$$

for some $a \in \mathbb{F}_{q}^{*}$. We then have the partial fraction decomposition

$$
\frac{1}{P(x)}=\frac{1}{a} \sum_{i=1}^{k} \frac{a_{i}}{1-\alpha_{i} x}
$$

where $a_{i}=\alpha_{i}^{k-1} / Q^{\prime}\left(\alpha_{i}\right)$ for $1 \leq i \leq k$. Expanding each term of the partial fraction formally as a power series and collecting terms, we obtain

$$
\frac{1}{P(x)}=\frac{1}{a}\left(s_{k-1}+s_{k} x+s_{k+1} x^{2}+\cdots\right)
$$

where

$$
s_{r}=\sum_{i=1}^{k} \frac{\alpha_{i}^{r}}{Q^{\prime}\left(\alpha_{i}\right)}=\operatorname{Tr}\left(\frac{\alpha^{r}}{Q^{\prime}(\alpha)}\right)
$$

for each integer r and $\alpha=\alpha_{1}$. Here $\operatorname{Tr}: \mathbb{F}_{q^{k}} \rightarrow \mathbb{F}_{q}$ is the trace map. Now, we have

$$
g(x)=\frac{x^{m}-1}{(x-1) P(x)}=\frac{1}{a}\left(1+x+\cdots+x^{m-1}\right)\left(s_{k-1}+s_{k} x+s_{k+1} x^{2}+\cdots\right) .
$$

https://daneshyari.com/en/article/4582770

Download Persian Version:
https://daneshyari.com/article/4582770

Daneshyari.com

[^0]: E-mail address: samrith@gmail.com.
 http://dx.doi.org/10.1016/j.ffa.2014.09.006
 1071-5797/® 2014 Elsevier Inc. All rights reserved.

