Blocking sets of the classical unital

A. Blokhuis ${ }^{\text {a }}$, A.E. Brouwer ${ }^{\text {a }}$, D. Jungnickel ${ }^{\text {b }}$, V. Krčadinac ${ }^{\text {c }}$,
S. Rottey ${ }^{\text {d,e }}$, L. Storme ${ }^{e, *}$, T. Szőnyi ${ }^{\text {f,e }}$, P. Vandendriessche ${ }^{e}$
${ }^{\text {a }}$ Eindhoven University of Technology, Department of Mathematics and Computing
Science, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
${ }^{\text {b }}$ Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research,
Universität Augsburg, D-86135 Augsburg, Germany
${ }^{\text {c }}$ Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb, Croatia
${ }^{\text {d }}$ Vrije Universiteit Brussel, Faculty of Engineering, Pleinlaan 2, 1050 Brussel, Belgium
${ }^{\text {e }}$ Ghent University, Department of Mathematics, Krijgslaan 281, 9000 Gent, Belgium
${ }^{\mathrm{f}}$ Eötvös Loránd University, Department of Computer Science, and MTA-ELTE Geometric and Algebraic Combinatorics Research Group, Pázmány P. sétány 1/c, 1117 Budapest, Hungary

A R T I C L E I N F O

Article history:

Received 18 October 2013
Received in revised form 22 January
2015
Accepted 13 February 2015
Available online 19 March 2015
Communicated by Olga Polverino

MSC:

05B05
51E05
51E10
51E20
51 E 21

[^0]
1. Introduction

In any point-line geometry (or, much more generally, any hypergraph) a blocking set is a subset B of the point set that has nonempty intersection with each line (or each edge).

Blocking sets in the finite Desarguesian projective planes $\mathrm{PG}(2, q)$ have been investigated in great detail [16,17]. Since in a projective plane any two lines meet, every set containing a line is a blocking set. A blocking set of a projective plane is called non-trivial or proper when it does not contain a line. We shall also call blocking sets in other pointline geometries proper when they do not contain a line. By definition the complement of a proper blocking set is again one, and every 2 -coloring (vertex coloring with two colors such that no line is monochromatic) provides a complementary pair of proper blocking sets.

A blocking set is minimal when no proper subset is a blocking set. A blocking set in $\mathrm{PG}(2, q)$ is small when its size is smaller than $3(q+1) / 2$.

This latter definition was motivated by the important results of Sziklai and Szőnyi, who proved the following ' $1(\bmod p)$ ' result for small minimal blocking sets B in $\mathrm{PG}(2, q)$.

Theorem 1.1 (Sziklai and Szőnyi). (See [16,17].) Let B be a small minimal blocking set in $P G(2, q), q=p^{h}$, p prime, $h \geq 1$. Then B intersects every line in $1(\bmod p)$ points.

If e is the largest integer such that B intersects every line in $1\left(\bmod p^{e}\right)$ points, then e is a divisor of h, and every line of $P G(2, q)$ that intersects B in exactly $1+p^{e}$ points intersects B in a subline $P G\left(1, p^{e}\right)$.

A unital \mathcal{U} of order q is a $2-\left(q^{3}+1, q+1,1\right)$ design, an incidence structure consisting of a set of $q^{3}+1$ points and a collection of subsets of size $q+1$ called blocks, where any two distinct points are incident with a unique block.

The classical example of a unital of order q arises from a Hermitian curve $\mathcal{H}\left(2, q^{2}\right)$ of $\operatorname{PG}\left(2, q^{2}\right)$. The absolute points of a Hermitian polarity in $\operatorname{PG}\left(2, q^{2}\right)$ constitute an absolutely irreducible curve Γ of degree $q+1$ in $\operatorname{PG}\left(2, q^{2}\right)$, projectively equivalent to the algebraic curve with equation $X^{q+1}+Y^{q+1}+Z^{q+1}=0$. It is known that $|\Gamma|=q^{3}+1$ in $\operatorname{PG}\left(2, q^{2}\right)$ and every line in $\operatorname{PG}\left(2, q^{2}\right)$ meets Γ in either 1 or $q+1$ points. In the first case, the line is called a tangent line to Γ, in the second case a secant line to Γ. The blocks of the classical unital are the intersections of the secant lines with Γ.

In this article we investigate blocking sets of the classical unital \mathcal{U} arising from the Hermitian curve $\mathcal{H}\left(2, q^{2}\right)$ of $\operatorname{PG}\left(2, q^{2}\right)$.

https://daneshyari.com/en/article/4582786

Download Persian Version:

https://daneshyari.com/article/4582786

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: a.blokhuis@tue.nl (A. Blokhuis), aeb@cwi.nl (A.E. Brouwer), jungnickel@math.uni-augsburg.de (D. Jungnickel), krcko@math.hr (V. Krčadinac), Sara.Rottey@vub.ac.be, sara.rottey@ugent.be (S. Rottey), 1s@cage.ugent.be (L. Storme), szonyi@cs.elte.hu (T. Szőnyi), pv@cage.ugent.be (P. Vandendriessche).

 URLs: http://www.math.uni-augsburg.de/opt/ (D. Jungnickel), http://web.math.pmf.unizg.hr/~krcko/homepage.html (V. Krčadinac), http://cage.ugent.be/~ls (L. Storme), http://cage.ugent.be/~pv (P. Vandendriessche).

