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It is known that the classical unital arising from the Her-
mitian curve in PG(2, 9) does not have a 2-coloring without 
monochromatic lines. Here we show that for q ≥ 4 the Her-
mitian curve in PG(2, q2) does possess 2-colorings without 
monochromatic lines. We present general constructions and 
also prove a lower bound on the size of blocking sets in the 
classical unital.
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1. Introduction

In any point–line geometry (or, much more generally, any hypergraph) a blocking set
is a subset B of the point set that has nonempty intersection with each line (or each 
edge).

Blocking sets in the finite Desarguesian projective planes PG(2, q) have been inves-
tigated in great detail [16,17]. Since in a projective plane any two lines meet, every set 
containing a line is a blocking set. A blocking set of a projective plane is called non-trivial
or proper when it does not contain a line. We shall also call blocking sets in other point–
line geometries proper when they do not contain a line. By definition the complement of 
a proper blocking set is again one, and every 2-coloring (vertex coloring with two colors 
such that no line is monochromatic) provides a complementary pair of proper blocking 
sets.

A blocking set is minimal when no proper subset is a blocking set. A blocking set in 
PG(2, q) is small when its size is smaller than 3(q + 1)/2.

This latter definition was motivated by the important results of Sziklai and Szőnyi, 
who proved the following ‘1 (mod p)’ result for small minimal blocking sets B in PG(2, q).

Theorem 1.1 (Sziklai and Szőnyi). (See [16,17].) Let B be a small minimal blocking set 
in PG(2, q), q = ph, p prime, h ≥ 1. Then B intersects every line in 1 (mod p) points.

If e is the largest integer such that B intersects every line in 1 (mod pe) points, then 
e is a divisor of h, and every line of PG(2, q) that intersects B in exactly 1 + pe points 
intersects B in a subline PG(1, pe).

A unital U of order q is a 2-(q3 + 1, q + 1, 1) design, an incidence structure consisting 
of a set of q3 + 1 points and a collection of subsets of size q + 1 called blocks, where any 
two distinct points are incident with a unique block.

The classical example of a unital of order q arises from a Hermitian curve H(2, q2)
of PG(2, q2). The absolute points of a Hermitian polarity in PG(2, q2) constitute an 
absolutely irreducible curve Γ of degree q+1 in PG(2, q2), projectively equivalent to the 
algebraic curve with equation Xq+1 + Y q+1 + Zq+1 = 0. It is known that |Γ| = q3 + 1
in PG(2, q2) and every line in PG(2, q2) meets Γ in either 1 or q + 1 points. In the first 
case, the line is called a tangent line to Γ, in the second case a secant line to Γ. The 
blocks of the classical unital are the intersections of the secant lines with Γ.

In this article we investigate blocking sets of the classical unital U arising from the 
Hermitian curve H(2, q2) of PG(2, q2).
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