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This characterization depends to the relation of the irreducible
idempotents of the cyclic group algebra F,C), and the central
irreducible idempotents of the group algebras Fq Doy, .
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1. Introduction

Let K be a field and G be a group with n elements. It is known that, if char(K) 1 n,
then the group algebra KG is semisimple and as a consequence of the Wedderburn
Theorem, we have that K'G is isomorphic to a direct sum of matrix algebras over division
rings, such that each division algebra is a finite algebra over the field K, i.e., there exists
an isomorphism

p: KG — My, (D1) ® My, (D2) @ -+ & My, (Dy),
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where D; are division rings such that |G| = Y>'_, 1?[D; : K]. Observe that KG has t

Jj=1"7
central irreducible idempotents, each one of the form

ei=p 00 200 L3200 - ©0),

where I; is the identity matrix of the component M;,(D;). Then, the isomorphism p
determines explicitly each central irreducible idempotent.

In the case K = Q, the calculus of central idempotents and Wedderburn decomposi-
tion is widely studied; the classical method to calculate the primitive central idempotents
of group algebras depends on computing the character group table. Another method is
shown in [8], where Jespers, Leal and Paques describe the central irreducible idem-
potents when G is a nilpotent group, using the structure of its subgroups, without
employing the characters of the group. Generalizations and improvements of this method
can be found in [11], where the authors provide information about the Wedderburn
decomposition of QG. This computational method is also used in [2] to compute the
Wedderburn decomposition and the primitive central idempotents of a semisimple finite
group algebra K G, where G is an abelian-by-supersolvable group G and K is a finite
field.

The structure of KG when G = Do, is the dihedral group with 2n elements is well
known for K = Q (see [7]). In [5], Dutra, Ferraz and Polcino Milies impose conditions
over ¢ and n in order for FyDs, to have the same number of irreducible components
as that of QDs,. This result is generalized in [6], where Ferraz, Goodaire and Polcino
Milies find, for some families of groups, conditions on ¢ and G in order for F,G to have
the minimum number of simple components.

In this article, assuming that every prime factor of n divides ¢ — 1, we show explicitly
the central irreducible idempotents of F,Dg, and an isomorphism between the group
algebra IFy Do, and its Wedderburn decomposition. Observe that this isomorphism also
shows the structure of U (F,Dsy,), the unit group of FyDay,,.

2. Idempotents of cyclic group algebra

Throughout this article, IF; denotes a finite field of order g, where ¢ is a power of a
prime and n is a positive integer such that ged(n, ¢) = 1. For every polynomial g(x) with
g(0) # 0, g* denotes the reciprocal polynomial of g, i.e., g*(x) = xdeg(g)g(%). We say
that a polynomial g is an auto-reciprocal polynomial if g and ¢g* have the same roots in
its splitting field. The polynomial 2™ — 1 € F,[x] splits into monic irreducible factors as

2" = 1= fife- frfrrifrpafrvafiie o fraships

where f1 =x—1, fo =z+1ifniseven, and f; = f; for 2 < j < r, where r is the number
of auto-reciprocal factors in the factorization and 2s the number of non-auto-reciprocal
factors.
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