

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Trace self-orthogonal relations of normal bases

Xiyong Zhang ^{a,b,c,*}, Weiwei Huang ^b, Quanmei Chu ^b, Wenbao Han ^{a,b}

 $^{\rm a}$ State Key Lab of Mathematical Engineering and Advanced Computing,

Wuxi 214215, PR China

 $^{\rm b}$ Zhengzhou Information Science and Technology Institute, Zhengzhou 450002, PR China

 $^{\rm c}$ Science and Technology on Information Assurance Laboratory, Beijing 100072, PR China

A R T I C L E I N F O

Article history: Received 10 June 2014 Received in revised form 17 March 2015 Accepted 16 May 2015 Available online 3 June 2015 Communicated by S. Gao

MSC: 11T71

Keywords: Normal basis Trace self-orthogonal Reciprocal polynomial Quadratic residue

ABSTRACT

Normal bases with specific trace self-orthogonal relations over finite fields have been found to be very useful for many fast arithmetic computations, especially when the extensions of finite fields have no self-dual normal basis. Recent work in [1] has given the necessary and sufficient conditions for the existence of normal bases of $GF(2^n)$ with a prescribed trace vector when n is odd or n is a power of two. However, the methods in [1] cannot work in general cases. In this paper, using methods different from [1], we give a complete characterization of the trace self-orthogonal relations of arbitrary normal bases. Furthermore, we provide a combination method to construct normal elements with the prescribed trace vectors. These generalize the results in [1] to general cases. The main result of this paper is shown as follows.

Let $\underline{a} = (a_0, a_1, \dots, a_{n-1})$ be a prescribed *n*-vector over GF(q), with corresponding polynomial $f_a(x) = \sum_{i=0}^{n-1} a_i x^i$. We present that there exists a normal element α of $GF(q^n)$ over GF(q), with trace vector \underline{a} , such that $a_i = Tr_{q^n|q}(\alpha^{1+q^i})$ for all $0 \leq i \leq n-1$, if and only if $a_i = a_{n-i}$ for all $1 \leq i \leq n-1$ and

 $^{\,^*}$ Corresponding author at: Zhengzhou Information Science and Technology Institute, Zhengzhou 450002, PR China.

E-mail address: xiyong.zhang@hotmail.com (X. Zhang).

- 1) when q is odd, $f_a(x)$ is prime to $x^n 1$; $f_a(1)$ is a quadratic residue in GF(q); for even n, if $f_a(-1) \neq 0$, then $f_a(-1)$ is not a quadratic residue in GF(q);
- 2) when q is even, $f_a(x)$ is prime to $x^n 1$; for even n, $a_{n/2} = 0$ and if $4 \mid n$, then $\operatorname{Tr}_{q|2}(\sum_{i=0}^{n/4-1} a_0^{-1} a_{2i+1}) = 1$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_q be the *q* elements finite field of characteristic *p*, where *q* is a power of *p*. Let \mathbb{F}_{q^n} be the extension field of degree *n* over \mathbb{F}_q . The trace function from \mathbb{F}_{q^n} to \mathbb{F}_q is defined as

$$\operatorname{Tr}_{q^n|q}(\alpha) = \sum_{i=0}^{n-1} \alpha^{q^i}, \alpha \in \mathbb{F}_{q^n}.$$

A normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q is a basis of the form $N = \{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$, where α is called a **normal element** of \mathbb{F}_{q^n} over \mathbb{F}_q . It is well-known that there exists a normal basis for every finite field extension \mathbb{F}_{q^n} over \mathbb{F}_q . Let $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ and $\{\beta, \beta^q, \dots, \beta^{q^{n-1}}\}$ be two normal bases of \mathbb{F}_{q^n} over \mathbb{F}_q , if

$$\operatorname{Tr}_{q^{n}|q}(\alpha^{q^{i}} \cdot \beta^{q^{j}}) = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$$

then $\{\beta, \beta^q, \dots, \beta^{q^{n-1}}\}$ is called the **dual basis** of $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$. If $\alpha = \beta$, then the normal basis $\{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$ is called **self-dual**.

It is well-known that normal bases and self-dual normal bases over finite fields have wide applications such as in coding theory, cryptography, signal processing, etc. Constructions of normal bases and self-dual normal bases have been studied extensively in the past two decades. A non-exhaustive list of references is [2–6]. The latest results can be found, for instance, in [5] and [6], where explicit constructions of self-dual (integral) normal bases in abelian extensions of finite and local fields are given.

In the following, we show the standard results of normal bases and self-dual normal bases.

Theorem 1.1 (The normal basis theorem). For any prime power q and positive integer n, there is a normal basis in \mathbb{F}_{q^n} over \mathbb{F}_q .

Theorem 1.2. (See [7].) There is a self-dual normal basis of \mathbb{F}_{q^n} over \mathbb{F}_q if and only if one of the following is true.

Download English Version:

https://daneshyari.com/en/article/4582803

Download Persian Version:

https://daneshyari.com/article/4582803

Daneshyari.com