

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

The isotopism problem of a class of 6-dimensional rank 2 semifields and its solution

M. Lavrauw^a, G. Marino^{b,*}, O. Polverino^b, R. Trombetti^c

^a Department of Management and Engineering, Università di Padova, I-36100 Vicenza, Italy

^b Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, I-81100 Caserta, Italy

^c Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II", I-80126 Napoli, Italy

A R T I C L E I N F O

Article history: Received 17 April 2014 Received in revised form 13 January 2015 Accepted 20 January 2015 Available online 2 March 2015 Communicated by L. Storme

MSC: 12K10 51A40 51E99

Keywords: Semifield Semifield spread Linear set

ABSTRACT

In [5] three classes of rank two presemifields of order q^{2n} , with q and n odd, were exhibited, leaving as an open problem the isotopy issue. In [18], the authors faced with this problem answering the question whether these presemifields are new for n > 3. In this paper we complete the study solving the case n = 3.

© 2015 Published by Elsevier Inc.

^{*} Corresponding author.

E-mail addresses: michel.lavrauw@unipd.it (M. Lavrauw), giuseppe.marino@unina2.it (G. Marino), olga.polverino@unina2.it (O. Polverino), rtrombet@unina.it (R. Trombetti).

1. Introduction

A finite presemifield $\mathbb{S} = (\mathbb{S}, +, \cdot)$ is a finite algebra satisfying all the axioms for a skewfield except the associativity for the multiplication and the existence of a multiplicative identity. If a presemifield has an identity element then it is called a *semifield*. Semifields have received a lot of attention in recent years, and we refer to [20] and [19] for references, general theory, and definitions, if they are not included here. A finite presemifield has order a power of a prime p and such a prime is called the *characteristic* of S. Two presemifields $\mathbb{S} = (\mathbb{S}, +, \cdot)$ and $\mathbb{S}' = (\mathbb{S}', +, \circ)$ of characteristic p are said to be *isotopic* if there exist three \mathbb{F}_p -linear maps g_1, g_2 and g_3 from S into S' such that $g_1(x \cdot y) = g_2(x) \circ g_3(y)$ for all $x, y \in \mathbb{S}$. From the isotopy point of view, presemifields are not more general than semifields; in fact, it is easy to see that the isotopy class of a presemifield always contains a semifield [15, Theorem 4.5.4]. The definition of the *nuclei* and of the *center* of a semifield can be found, e.g., in [20]. If two (pre)semifields are isotopic their dimensions over the nuclei and over the center are invariant, and we refer to them as the *parameters* of the (pre)semifield. In [5] the author introduced three families of rank 2 presemifields of order q^n , with q and n odd, 2-dimensional over their left nucleus and 2n-dimensional over their center. These presemifields are obtained starting from a pair of bijective \mathbb{F}_q -linear maps of \mathbb{F}_{q^n} , satisfying suitable conditions [5, Theorem 4.1], and they have been labeled \mathcal{D}_A , \mathcal{D}_B and \mathcal{D}_{AB} in [18]. Also, in [5, Theorem 4.3], the author determined their parameters. This information was insufficient to address the isotopy issue which, in fact, was leaved as an open problem. In [18] this problem was solved for n > 3, proving that presentifields in the families \mathcal{D}_A and \mathcal{D}_{AB} are new, i.e. not isotopic to any previously known semifield; whereas presemifields in the family \mathcal{D}_B are isotopic to Generalized Twisted Fields for all $n \geq 3$. The remaining part of the case n = 3 is treated here separately; this mainly because in the relevant case there are many more known examples in the literature to compare with [2,6-9,14,12,13,15,17,29]. For n = 3 the Dempwolff presemifields \mathcal{D}_A and \mathcal{D}_{AB} are the algebraic structures $\mathcal{D}_A = (\mathbb{F}_{q^3} \times \mathbb{F}_{q^3}, +, \star_A)$ and $\mathcal{D}_{AB} = (\mathbb{F}_{q^3} \times \mathbb{F}_{q^3}, +, \star_{AB}), q$ odd, having multiplications defined as follows

$$(u,v)\star_A(x,y) = (u,v)\begin{pmatrix} x & y\\ A_{a,r}(y) & \xi A_{a,r}(x) \end{pmatrix},$$

where $A_{a,r}(x) = x^{q^r} - ax^{q^{-r}}$, $r \in \{1, 2\}$, such that ξ is a nonsquare in \mathbb{F}_q and $a \in \mathbb{F}_{q^3}^*$ with $N_{q^3/q}(a) \neq 1,^1$ and

$$(u, v) \star_{AB} (x, y) = (u, v) \begin{pmatrix} x & y \\ A_{b^2, r}(y) & \xi B_{b, -r}(x) \end{pmatrix},$$

¹ $N_{q^3/q}$ denotes the norm function of \mathbb{F}_{q^3} over \mathbb{F}_q .

Download English Version:

https://daneshyari.com/en/article/4582823

Download Persian Version:

https://daneshyari.com/article/4582823

Daneshyari.com