On $(0, \alpha)$-sets of generalized quadrangles

Antonio Cossidente, Francesco Pavese *
Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, I-85100 Potenza, Italy

A R T I C L E I N F O

Article history:

Received 29 November 2013
Received in revised form 23 April 2014
Accepted 30 June 2014
Available online 23 July 2014
Communicated by L. Storme

MSC:

51 E 12
51 E 20
05B25
Keywords:
Generalized quadrangle
($0, \alpha$)-set
Partial ovoid
Tight set
Hyperoval

A B S T R A C T

Several infinite families of $(0, \alpha)$-sets, $\alpha \geq 1$, of finite classical and non-classical generalized quadrangles are constructed. When $\alpha=1$ a $(0, \alpha)$-set of a generalized quadrangle is a partial ovoid. We construct a maximal partial ovoid of $\mathcal{H}\left(4, q^{2}\right)$, for any q, of size $2 q^{3}+q^{2}+1$, which generalizes the unique largest partial ovoid of $\mathcal{H}(4,4)$ of size 21 found in [11], and a maximal partial ovoid of $\mathcal{Q}^{-}(5, q)$ of size $(q+1)^{2}$, for any q. A tight set of a $G Q(q-1, q+1)$ is also provided.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A generalized quadrangle of order $(s, t)(G Q(s, t)$ for short) is an incidence structure $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ of points and lines with the properties that any two points (lines) are incident with at most one line (point), every point is incident with $t+1$ lines, every line

[^0]is incident with $s+1$ points, and for any point P and line l which are not incident, there is a unique point on l collinear with P. The standard reference is [30]. A polar space of rank 2 is a $G Q$ and a classical $G Q$ is a $G Q$ arising from a polar space. Also, the dual of a $G Q(s, t)$ is a $G Q(t, s)$.

A $(0, \alpha)$-set of a generalized quadrangle \mathcal{S} is a non-empty set of points of \mathcal{S} which intersects every line of \mathcal{S} in either 0 or α points.

When α equals 2 , then a $(0,2)$-set is called a hyperoval or a BLT-set of points [32, Section 6]. As observed in [8, Remark 2, p. 404], a hyperoval of a generalized quadrangle \mathcal{S} is a regular graph of degree equal to $\left|\operatorname{Cone}_{P}(\mathcal{S})\right|$, valency $t+1$, and has the remarkable property of being triangle free.

A set of points \mathcal{T} of a $G Q(s, t)$ is an i-tight set if for every point P in \mathcal{T}, there are $s+i$ points of \mathcal{T} collinear with P, and for every point P not in \mathcal{T}, there are i points of \mathcal{T} collinear with P. The size of an i-tight set of a $G Q(s, t)$ is $i(s+1)$.

Lower and upper bounds on the size of a ($0, \alpha$)-set of a generalized quadrangle of order (s, t) were obtained by Cameron, Hughes, Pasini [9] and Del Fra, Ghinelli, Payne [21]. For hyperovals in finite classical polar spaces see [19].

Proposition 1.1. (See [9].) Let \mathcal{S} be a generalized quadrangle of order (s, t) and let \mathcal{K} be $a(0, \alpha)$-set of \mathcal{S}, with $k=|\mathcal{K}|$. Then
i) α is a divisor of k;
ii) $k \geq \alpha[(\alpha-1) t+1]=b_{1}$ and, if $\alpha \neq 1$, equality holds if and only if \mathcal{K} is a subquadrangle of \mathcal{S} of order $(\alpha-1, t)$;
iii) $k \geq(s+1)[\alpha(t+1)-(s+t)]=b_{2}$ and equality holds if and only if \mathcal{K} is a $k /(s+1)$-tight set of \mathcal{S} (in this case α divides $s+t$);
iv) $k \leq \alpha(s t+1)$ and equality holds if and only if \mathcal{K} is an α-ovoid of \mathcal{S}.

For information on $(0, \alpha)$-sets of polar spaces see [21] and literature therein [19]. For more details on m-ovoids and tight sets of polar spaces, see $[5,6]$.

Remark 1.2. Notice that b_{1} is a better lower bound than b_{2} if and only if $\alpha<1+s / t$ and if $\alpha=1+s / t$, then $b_{1}=b_{2}$.

A partial ovoid $((0,1)$-set) \mathcal{O} of a generalized quadrangle \mathcal{S} is a set of points of \mathcal{S} such that every line contains at most one point of \mathcal{O}. A partial spread \mathcal{F} of a generalized quadrangle \mathcal{S} is a set of pairwise disjoint lines of \mathcal{S}. A partial ovoid or a partial spread is said to be maximal if it is maximal with respect to set-theoretic inclusion.

An ovoid \mathcal{O} of a generalized quadrangle \mathcal{S} is a set of points of \mathcal{S} such that every line contains exactly one point of \mathcal{O}. A spread \mathcal{F} of a generalized quadrangle \mathcal{S} is a set of lines of \mathcal{S} partitioning the point set of \mathcal{S}. For $\mathcal{W}(3, q)\left(q\right.$ odd), $\mathcal{Q}^{-}(5, q)$ and $\mathcal{H}\left(4, q^{2}\right)$, it is known that no ovoids exist [33]. In this paper we provide some new infinite families of $(0, \alpha)$-set on certain classical and non-classical generalized quadrangles. Specializing to

https://daneshyari.com/en/article/4582838

Download Persian Version:
https://daneshyari.com/article/4582838

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: antonio.cossidente@unibas.it (A. Cossidente), francesco.pavese@unibas.it (F. Pavese).

