

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On $(0, \alpha)$ -sets of generalized quadrangles

Antonio Cossidente, Francesco Pavese*

Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, I-85100 Potenza, Italy

ARTICLE INFO

Article history: Received 29 November 2013 Received in revised form 23 April 2014 Accepted 30 June 2014 Available online 23 July 2014 Communicated by L. Storme

MSC: 51E12 51E20 05B25

Keywords: Generalized quadrangle $(0, \alpha)$ -set Partial ovoid Tight set Hyperoval

ABSTRACT

Several infinite families of $(0, \alpha)$ -sets, $\alpha \geq 1$, of finite classical and non-classical generalized quadrangles are constructed. When $\alpha = 1$ a $(0, \alpha)$ -set of a generalized quadrangle is a partial ovoid. We construct a maximal partial ovoid of $\mathcal{H}(4, q^2)$, for any q, of size $2q^3 + q^2 + 1$, which generalizes the unique largest partial ovoid of $\mathcal{H}(4, 4)$ of size 21 found in [11], and a maximal partial ovoid of $\mathcal{Q}^-(5, q)$ of size $(q + 1)^2$, for any q. A tight set of a GQ(q - 1, q + 1) is also provided.

@ 2014 Elsevier Inc. All rights reserved.

1. Introduction

A generalized quadrangle of order (s,t) (GQ(s,t) for short) is an incidence structure $\mathcal{S} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ of points and lines with the properties that any two points (lines) are incident with at most one line (point), every point is incident with t + 1 lines, every line

 $\label{eq:http://dx.doi.org/10.1016/j.ffa.2014.06.004 \\ 1071-5797/© 2014$ Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: antonio.cossidente@unibas.it (A. Cossidente), francesco.pavese@unibas.it (F. Pavese).

is incident with s + 1 points, and for any point P and line l which are not incident, there is a unique point on l collinear with P. The standard reference is [30]. A polar space of rank 2 is a GQ and a classical GQ is a GQ arising from a polar space. Also, the dual of a GQ(s,t) is a GQ(t,s).

A $(0, \alpha)$ -set of a generalized quadrangle S is a non-empty set of points of S which intersects every line of S in either 0 or α points.

When α equals 2, then a (0,2)-set is called a *hyperoval* or a *BLT-set* of points [32, Section 6]. As observed in [8, Remark 2, p. 404], a hyperoval of a generalized quadrangle S is a regular graph of degree equal to $|\text{Cone}_P(S)|$, valency t+1, and has the remarkable property of being triangle free.

A set of points \mathcal{T} of a GQ(s,t) is an *i*-tight set if for every point P in \mathcal{T} , there are s + i points of \mathcal{T} collinear with P, and for every point P not in \mathcal{T} , there are i points of \mathcal{T} collinear with P. The size of an *i*-tight set of a GQ(s,t) is i(s+1).

Lower and upper bounds on the size of a $(0, \alpha)$ -set of a generalized quadrangle of order (s, t) were obtained by Cameron, Hughes, Pasini [9] and Del Fra, Ghinelli, Payne [21]. For hyperovals in finite classical polar spaces see [19].

Proposition 1.1. (See [9].) Let S be a generalized quadrangle of order (s,t) and let K be a $(0, \alpha)$ -set of S, with k = |K|. Then

- i) α is a divisor of k;
- ii) $k \ge \alpha[(\alpha-1)t+1] = b_1$ and, if $\alpha \ne 1$, equality holds if and only if \mathcal{K} is a subquadrangle of \mathcal{S} of order $(\alpha 1, t)$;
- iii) $k \ge (s+1)[\alpha(t+1)-(s+t)] = b_2$ and equality holds if and only if \mathcal{K} is a k/(s+1)-tight set of \mathcal{S} (in this case α divides s + t);
- iv) $k \leq \alpha(st+1)$ and equality holds if and only if \mathcal{K} is an α -ovoid of \mathcal{S} .

For information on $(0, \alpha)$ -sets of polar spaces see [21] and literature therein [19]. For more details on *m*-ovoids and tight sets of polar spaces, see [5,6].

Remark 1.2. Notice that b_1 is a better lower bound than b_2 if and only if $\alpha < 1 + s/t$ and if $\alpha = 1 + s/t$, then $b_1 = b_2$.

A partial ovoid ((0, 1)-set) \mathcal{O} of a generalized quadrangle \mathcal{S} is a set of points of \mathcal{S} such that every line contains at most one point of \mathcal{O} . A partial spread \mathcal{F} of a generalized quadrangle \mathcal{S} is a set of pairwise disjoint lines of \mathcal{S} . A partial ovoid or a partial spread is said to be maximal if it is maximal with respect to set-theoretic inclusion.

An ovoid \mathcal{O} of a generalized quadrangle \mathcal{S} is a set of points of \mathcal{S} such that every line contains exactly one point of \mathcal{O} . A spread \mathcal{F} of a generalized quadrangle \mathcal{S} is a set of lines of \mathcal{S} partitioning the point set of \mathcal{S} . For $\mathcal{W}(3,q)$ (q odd), $\mathcal{Q}^{-}(5,q)$ and $\mathcal{H}(4,q^2)$, it is known that no ovoids exist [33]. In this paper we provide some new infinite families of (0, α)-set on certain classical and non-classical generalized quadrangles. Specializing to Download English Version:

https://daneshyari.com/en/article/4582838

Download Persian Version:

https://daneshyari.com/article/4582838

Daneshyari.com