

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Average behaviors of invariant factors in Mordell–Weil groups of CM elliptic curves modulo p

Sungjin Kim

Department of Mathematics, University of California, Math Science Building 6160, Los Angeles, United States

ARTICLE INFO

Article history: Received 13 January 2014 Received in revised form 14 July 2014 Accepted 15 July 2014 Available online 7 August 2014 Communicated by Neal Koblitz

MSC: 11G05

Keywords: Elliptic curve Invariants Average

ABSTRACT

Let E be an elliptic curve defined over $\mathbb Q$ and with complex multiplication by $\mathcal O_K$, the ring of integers in an imaginary quadratic field K. Let p be a prime of good reduction for E. It is known that $E(\mathbb F_p)$ has a structure

$$E(\mathbb{F}_p) \simeq \mathbb{Z}/d_p\mathbb{Z} \oplus \mathbb{Z}/e_p\mathbb{Z}$$
 (1)

with uniquely determined $d_p|e_p$. We give an asymptotic formula for the average order of e_p over primes $p \leq x$ of good reduction, with improved error term $O(x^2/\log^A x)$ for any positive number A, which previously was set as $O(x^2/\log^{1/8} x)$ by [12]. Further, we obtain an upper bound estimate for the average of d_p , and a lower bound estimate conditionally on nonexistence of Siegel-zeros for Hecke L-functions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let E be an elliptic curve over \mathbb{Q} , and p be a prime of good reduction. Denote by $E(\mathbb{F}_p)$ the group of \mathbb{F}_p -rational points of E. It is known that $E(\mathbb{F}_p)$ has a structure

$$E(\mathbb{F}_p) \simeq \mathbb{Z}/d_p \mathbb{Z} \oplus \mathbb{Z}/e_p \mathbb{Z} \tag{2}$$

with uniquely determined $d_p|e_p$. By Hasse's bound, we have

$$\left| E(\mathbb{F}_p) \right| = p + 1 - a_p \tag{3}$$

with $|a_p| < 2\sqrt{p}$. We fix some notation before stating results. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} . Let E[k] be the k-torsion points of the group $E(\overline{\mathbb{Q}})$. Denote by $\mathbb{Q}(E[k])$ the k-th division field of E, which is obtained by adjoining the coordinates of E[k] to \mathbb{Q} . Denote by n_k the field extension degree $[\mathbb{Q}(E[k]):\mathbb{Q}]$. Let $\mathrm{Li}(x)$ be the logarithmic integral defined by $\int_2^x \frac{1}{\log t} dt$. We use the notation F = O(G) if $F(x) \leq CG(x)$ holds for sufficiently large x and a positive constant C.

Recently, T. Freiberg and P. Kurlberg [4] started investigating the average order of e_p . They obtained that for any $x \geq 2$, there exists a constant $c_E \in (0,1)$ such that

$$\sum_{p \le x} e_p = c_E \operatorname{Li}(x^2) + O(x^{19/10} (\log x)^{6/5})$$
(4)

under the Generalized Riemann Hypothesis (GRH), and

$$\sum_{p \le x} e_p = c_E \operatorname{Li}(x^2) \left(1 + O\left(\frac{\log \log x}{\log^{1/8} x}\right) \right)$$
 (5)

unconditionally when E has a complex multiplication (CM). Here, the implied constants depend at most on E, and the GRH is for the Dedekind zeta functions of the field extensions $\mathbb{Q}(E[k])$ over \mathbb{Q} . (In the summation, we take 0 in place of e_p when E has a bad reduction at p.) More recently, J. Wu [12] improved their error terms in both cases

$$\sum_{p \le x} e_p = c_E \operatorname{Li}(x^2) + O(x^{11/6} (\log x)^{1/3})$$
(6)

under GRH, and

$$\sum_{p \le x} e_p = c_E \operatorname{Li}(x^2) + O(x^2/(\log x)^{9/8})$$
 (7)

unconditionally when E has CM.

In this paper, we improve the unconditional error term in the CM case by using a number field analogue of the Bombieri–Vinogradov theorem due to [6, Theorem 1]. Also, the result is uniform in the conductor of the elliptic curves under consideration.

Download English Version:

https://daneshyari.com/en/article/4582841

Download Persian Version:

https://daneshyari.com/article/4582841

<u>Daneshyari.com</u>