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In [14], McCarthy defined a function nGn[· · ·] using the Teich-
müller character of finite fields and quotients of the p-adic
gamma function. He expressed the trace of Frobenius of ellip-
tic curves in terms of special values of 2G2[· · ·]. For d � 2, we
establish four different expressions for the number of distinct
zeros of the polynomials xd + ax + b and xd + axd−1 + b over
Fq in terms of special values of the function d−1Gd−1[· · ·].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let p be an odd prime, and let Fq denote the finite field with q elements, where q = pr,
r � 1. Let Zp denote the ring of p-adic integers, Qp the field of p-adic numbers, Qp the
algebraic closure of Qp, and Cp the completion of Qp. Let Γp(.) denote the Morita’s
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p-adic gamma function, and let ω denote the Teichmüller character of Fq. We denote the
inverse of ω by ω. For x ∈ Q we let �x� denote the greatest integer less than or equal
to x and 〈x〉 denote the fractional part of x, i.e. x − �x�. In [14], McCarthy defined a
function nGn[· · ·] as given below.

Definition 1.1. (See [14, Defn. 5.1].) Let q = pr, for p an odd prime and r ∈ Z+, and let
t ∈ Fq. For n ∈ Z+ and 1 � i � n, let ai, bi ∈ Q ∩ Zp. Then the function nGn[· · ·] is
defined by

nGn

[
a1, a2, . . . , an

b1, b2, . . . , bn

∣∣∣t]
q

:= −1
q − 1

q−2∑
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(−1)jnωj(t)

×
n∏

i=1

r−1∏
k=0

(−p)−�〈aip
k〉− jpk

q−1 �−�〈−bip
k〉+ jpk

q−1 �

×
Γp(〈(ai − j

q−1 )pk〉)
Γp(〈aipk〉)

Γp(〈(−bi + j
q−1 )pk〉)

Γp(〈−bipk〉)
.

In [8], Greene introduced the notion of hypergeometric functions over finite fields.
Mathematicians have established many connections between hypergeometric functions
and number of zeros of polynomials. But these results are restricted to primes satisfying
certain congruence conditions. For example, see [1,2,7,12,13].

In [14], McCarthy expressed the trace of Frobenius of elliptic curves in terms of special
values of the function 2G2[· · ·] without any congruence condition on p. This G-function
generalizes Greene’s finite field hypergeometric function to the p-adic setting. For more
details, see [14] and for an earlier version of this G-function, see [15].

In [4], the authors have found two different expressions for the trace of Frobenius of
elliptic curves over Fq in terms of special values of the function 2G2[· · ·] with different
parameters. It would be interesting to obtain similar results involving special values of
the function nGn[· · ·] for n � 3. In this paper we consider this problem.

Recently, in [3], the first author and Kalita gave two formulas for the number of
distinct zeros of the polynomial xd + ax + b defined over Fq in terms of special values
of dFd−1 and d−1Fd−2 Gaussian hypergeometric series with characters of orders d and
d − 1 as parameters under the condition that q ≡ 1 (mod d(d − 1)). In [5], the authors
obtained similar formulas for the number of zeros of more general polynomials xd+axi+b

and xd + axd−i + b over Fq. In this paper, for d � 2, we consider the polynomials
Pd(x) := xd + ax + b and Qd(x) := xd + axd−1 + b over Fq; and express their number
of distinct zeros in terms of special values of the function d−1Gd−1[· · ·] without any
congruence condition on q. We prove the following main results.
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