

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

The weight distributions of two classes of p-ary cyclic codes

Dabin Zheng ^{a,*}, Xiaoqiang Wang ^a, Lei Hu ^{b,c}, Xiangyong Zeng ^{a,b}

ARTICLE INFO

Article history: Received 6 October 2013 Received in revised form 15 April 2014 Accepted 1 May 2014 Available online 24 May 2014 Communicated by Xiang-dong Hou

MSC: 94B15 11T71

Keywords: Cyclic code Weight distribution Exponential sum Quadratic form

ABSTRACT

Let p be an odd prime, and m, k be positive integers with $m \geq 3k$. Let \mathcal{C}_1 and \mathcal{C}_2 be cyclic codes over \mathbb{F}_p with parity-check polynomials $h_2(x)h_3(x)$ and $h_1(x)h_2(x)h_3(x)$, respectively, where $h_1(x)$, $h_2(x)$ and $h_3(x)$ are the minimal polynomials of γ^{-1} , $\gamma^{-(p^k+1)}$ and $\gamma^{-(p^{3k}+1)}$ over \mathbb{F}_p , respectively, for a primitive element γ of \mathbb{F}_{p^m} . Recently, Zeng et al. (2010) obtained the weight distribution of \mathcal{C}_2 for $\frac{m}{\gcd(m,k)}$ being odd. In this paper, we determine the weight distribution of \mathcal{C}_1 , and the weight distribution of \mathcal{C}_2 for the case that $\frac{m}{\gcd(m,k)}$ is even. © 2014 Elsevier Inc. All rights reserved.

 ^a Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China
 ^b State Key Laboratory of Information Security, Institute of Information

Engineering, CAS, Beijing 100093, China

^c Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China

^{*} Corresponding author.

E-mail addresses: dzheng@hubu.edu.cn (D. Zheng), waxiqq@163.com (X. Wang), hu@is.ac.cn (L. Hu), xzeng@hubu.edu.cn (X. Zeng).

1. Introduction

Let p be a prime. An [n,k]-linear code \mathcal{C} over the finite field \mathbb{F}_p is a k-dimensional linear subspace of \mathbb{F}_p^n . Moreover, if $(c_0,c_1,\cdots,c_{n-1})\in\mathcal{C}$ implies $(c_{n-1},c_0,\cdots,c_{n-2})\in\mathcal{C}$ then \mathcal{C} is called a cyclic code. It is well known that any cyclic code \mathcal{C} of length n over \mathbb{F}_p corresponds to an ideal of $\mathbb{F}_p[x]/(x^n-1)$ and can be expressed as $\mathcal{C}=\langle g(x)\rangle$, where g(x) is monic and has the least degree. The g(x) is called the generator polynomial and $h(x)=(x^n-1)/g(x)$ is referred to as the parity-check polynomial of \mathcal{C} [13].

The Hamming weight of a code word $(c_0, c_1, \dots, c_{n-1})$ in \mathcal{C} is the number of nonzero c_i for $0 \leq i \leq n-1$. Let A_i denote the number of nonzero codewords with Hamming weight i in \mathcal{C} . The sequence $(1, A_1, \dots, A_n)$ is called the weight distribution of \mathcal{C} . The weight distribution of a code not only gives the error correcting ability of the code, but also allows the computation of the error probability of error detection and correction [8]. So the study of the weight distribution of a cyclic code is important in both theory and applications. In general, the weight distributions of cyclic codes are difficult to be determined and they are known only for a few special classes of cyclic codes in literature (see, for example, [1-3,6,7,11,10,12,14-16,18-24] and references therein).

Throughout this paper, let p be an odd prime and k and m be positive integers with $m \geq 3k$. Let $h_1(x)$, $h_2(x)$ and $h_3(x)$ be the minimal polynomials of γ^{-1} , $\gamma^{-(p^k+1)}$, $\gamma^{-(p^{3k}+1)}$ over \mathbb{F}_p , respectively, where γ is a primitive element of the field \mathbb{F}_{p^m} . To find the degree of $h_i(x)$, i=1,2,3, we need to investigate the length of cyclotomic coset of $1, p^k + 1, p^{3k} + 1$ modulo $p^m - 1$, respectively. It is easy to see that $\deg h_1(x) = m$. We can verify that $\deg h_3(x) = \frac{m}{2}$ if m=6k otherwise $\deg h_3(x) = m$ (see Appendix A). In a similar way, $\deg h_2(x) = \frac{m}{2}$ if m=2k otherwise $\deg h_2(x) = m$. Thus, $\deg h_2(x) = m$ since $m \geq 3k$. Moreover, $h_2(x) = h_3(x)$ if and only if m=4k (see Appendix A).

In this paper we always assume that $m \geq 3k$ and $m \neq 4k$. Let \mathcal{C}_1 and \mathcal{C}_2 be the cyclic codes over \mathbb{F}_p of length $n = p^m - 1$ with parity-check polynomials $h_2(x)h_3(x)$ and $h_1(x)h_2(x)h_3(x)$, respectively. To determine the weight distribution of \mathcal{C}_1 and \mathcal{C}_2 , it is crucial to investigate the value distribution of the following exponential sum

$$S(a,b) = \sum_{x \in \mathbb{F}_{n^m}} \chi(ax^{p^k+1} + bx^{p^{3k}+1}),$$

where χ is a canonical additive character of \mathbb{F}_{p^m} , which is defined by $\chi(x)=\zeta_p^{\mathrm{Tr}(x)}$, and $\mathrm{Tr}(\cdot)$ is a trace function from \mathbb{F}_{p^m} to \mathbb{F}_p and $\zeta_p=e^{\frac{2\pi i}{p}}$ is a primitive p-th root of unity. It is known that possible distinct values of S(a,b) for (a,b) running through $\mathbb{F}_{p^m}^2$ are dependent on the rank and type of the quadratic form

$$Q_{a,b}(x) = \text{Tr}(ax^{p^k+1} + bx^{p^{3k}+1}).$$

For the case of $\frac{m}{\gcd(m,k)}$ being odd, Zeng et al. [21] recently proved that the rank of the quadratic form $Q_{a,b}(x)$ has only 3 possible values by nonlinear polynomial method, and then obtain the weight distribution of the cyclic code C_2 .

Download English Version:

https://daneshyari.com/en/article/4582857

Download Persian Version:

https://daneshyari.com/article/4582857

Daneshyari.com