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A conflict-avoiding code (CAC) is known as a protocol sequence
for transmitting data packets over a collision channel without
feedback. The study of CACs has been focused on determining
the size of an optimal code, i.e., the maximum size of a code, and
in the past few years it has been settled by several researchers
for even length and weight 3 together with constructions. As for
odd length, a necessary and sufficient condition for the existence
of a ‘tight equi-difference’ CAC of weight 3 can be found in
Momihara (2007), but the condition is fairly complex and thus
only a few explicit series of code lengths are known. Recently,
Fu et al. (2013) restated the condition given by Momihara (2007)
in a different way, which requires to examine the multiplicative
suborder of 2 modulo p for each prime factor p of m. Meanwhile,
Ma et al. (2013) presented constructions of an optimal equi-
difference CAC and an optimal tight CAC of odd prime length p
and weight 3, and formulated the sizes of such optimal codes.
However, for their formulae to have practical meaning, the number
of cosets of −(2)p ∪(2)p still needs to be determined, where (2)p is
the multiplicative subgroup of Z∗

p with generator 2. Moreover, their
construction of an optimal tight CAC imposes a certain condition.
This implies that even restricting ourselves to odd prime length,
to provide a series of odd code length for which the maximum
size of a CAC of weight 3 can be determined is a demanding
problem.
In this article, we will give some explicit series of tight/optimal
equi-difference CACs of odd length and weight 3 by revisiting some
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properties of multiplicative order of a unit in the ring of residues
modulo m and cyclotomic polynomials.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A conflict-avoiding code has been studied as a protocol sequence for a multiple-access channel
(collision channel) without feedback [6,9,10,13,17,20]. For the technical description of such a multiple-
access channel model, see [1,12].

In mathematical terms, a conflict-avoiding code (CAC) of length m and weight w is defined as a
set C ⊆ {0,1}m of binary vectors, called codewords, of Hamming weight w such that arbitrary cyclic
shifts x′, y′ of distinct codewords x, y ∈ C intersect at most at one coordinate, i.e., dist(x′, y′) � 2w −2
holds, where dist(x′, y′) is the Hamming distance between x′ and y′ . We denote the class of all the
CACs of length m and weight w by CAC(m, w).

The support of a codeword x = (x0, x1, . . . , xm−1) is the set of indices of its nonzero coordinates.
In this article, a codeword is expressed by its support, not as a binary vector. Then any code C ∈
CAC(m, w) can be regarded as a collection of w-subsets of Zm = {0,1, . . . ,m − 1}, the ring of residues
modulo m, such that

�(x) ∩ �(y) = ∅ for any x, y ∈ C,

where �(x) = { j − i (mod m): i, j ∈ x, i 	= j} is the set of differences arising from x. Since for any
codeword x in a code C ∈ CAC(m, w), the elements of �(x) are symmetric with respect to m/2, we
henceforth consider the halved difference set

�2(x) =
{

i ∈ �(x): i �
⌊

m

2

⌋}

instead of �(x). We also use the notation �2(C) to denote
⋃

x∈C �2(x).
If x is of form {0, i, . . . , (w − 1)i}, then it is said to be equi-difference (or centered when w = 3),

and if every codeword in a code C ∈ CAC(m, w) is equi-difference, then C is called an equi-difference
code (or centered code when w = 3). The class of all the equi-difference CACs of length m and weight
w is denoted by CACe(m, w). Obviously CACe(m, w) ⊆ CAC(m, w).

Let M(m, w) be the maximum size of a code in CAC(m, w), i.e.,

M(m, w) = max
{|C |: C ∈ CAC(m, w)

}
.

A code C ∈ CAC(m, w) is said to be optimal if |C | = M(m, w). Furthermore, an optimal code C ∈
CAC(m, w) is said to be tight if �2(C) = {1,2, . . . , 
m

2 �}. The maximum size of a code in CACe(m, w)

is defined as

Me(m, w) = max
{|C |: C ∈ CACe(m, w)

}
similarly to M(m, w). Several constructions for optimal equi-difference CACs of weight w � 4 can be
found in [16].

As for w = 3, the functions M(m,3) and Me(m,3) were studied in [8–10,15]. Levenshtein and
Tonchev [10] proved that

M(m,3) = Me(m,3) = m − 2

4
if m ≡ 2 (mod 4)
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