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A spread code is a set of vector spaces of a fixed dimension over
a finite field Fq with certain properties used for random network
coding. It can be constructed in different ways which lead to
different decoding algorithms. In this work we consider one such
representation of spread codes and present a minimum distance
decoding algorithm which is efficient when the code words, the
received space and the error space have small dimension.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In network coding, one is interested in efficient communication between different sources and
receivers in a network which is representable through a directed acyclic graph. In multicast, one is
looking at the communication between a sender and several receivers, where each receiver should re-
ceive the message sent by the sender. In [9,11] it is proven that one achieves the communication rate
simply by allowing nodes of the network to forward random linear combinations of its information
vectors. If the underlying topology of the network is unknown we speak about random linear network
coding. Since linear spaces are invariant under linear combinations, they are what is needed as code
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words [8]. It is helpful for decoding to constrain oneself to subspaces of a fixed dimension, in which
case we talk about constant dimension codes.

One class of constant dimension codes is the one of spread codes. These codes have maximal
minimum distance and are optimal in the sense that they achieve the Singleton-like bound on the
cardinality of network codes. They can be constructed with the help of companion matrices of irre-
ducible polynomials, as explained in [13].

In this work we translate the construction of [13] to an extension field setting and evolve a
minimum distance decoding algorithm for spread codes in this setting. The complexity of this new al-
gorithm depends on different parameters than the algorithms of [5,8,14], which are also applicable to
spread codes. Hence the new algorithm has an improved performance for network realizations where
the code words and the received spaces have small dimension.

The paper is structured as follows: In Section 2 we give some preliminaries on random network
coding and constant dimension codes. The main results of this work are found in Section 3, where
we first show how to translate the spread code construction of [13] into a different setting and
then explain how decoding can be done in this setting. We study the complexity of the decoding
algorithm and give comparison to other known decoding algorithms in Section 4. Moreover, we study
the probability that the algorithm terminates after fewer steps than the worst case scenario. We
conclude this work in Section 5.

2. Preliminaries

Let Fq be the finite field with q elements, where q is a prime power. We denote the set of all
subspaces of Fn

q by PG(n,q) and the set of all k-dimensional subspaces of Fn
q , called the Grassmannian,

by Gq(k,n). The general linear group GLn is the set of all invertible n × n-matrices with entries in Fq .
Moreover, the set of all k × n-matrices over Fq is denoted by Matk×n .

Let U ∈ Matk×n be a matrix of rank k and

U = rs(U ) := row space(U ) ∈ Gq(k,n).

We usually consider the matrix U to be in reduced row echelon form.
A subspace code is simply a subset of PG(n,q) and a constant dimension code is a subset of the

Grassmannian Gq(k,n).
The subspace distance, given by

dS(U,V) = dim(U + V) − dim(U ∩ V)

for U ,V two subspaces of Fn
q , is a metric function on PG(n,q). It induces a metric on Gq(k,n) by

dS(U,V) = 2k − 2 dim(U ∩ V)

for any U ,V ∈ Gq(k,n). The minimum distance of a subspace code C ⊆ PG(n,q) is defined as

d(C) := min
{

dS(U,V)
∣∣ U,V ∈ C, U �= V

}
.

The subspace distance is a suitable distance for coding over the operator channel [8], where errors
and erasures can be corrected. An error corresponds to an inserted erroneous vector, i.e. an increase
in dimension, whereas an erasure is a decrease in dimension of the code word. The error-and-erasure
correction capability of a code C ⊆ PG(n,q) with minimum distance d(C) is

t :=
⌊

d(C) − 1

2

⌋
.

Some constructions for constant dimension codes can be found e.g. in [3,7,8,14,15].
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