

Contents lists available at ScienceDirect

Finite Fields and Their Applications

FINITE FIELDS AND THIE APPLICATIONS

www.elsevier.com/locate/ffa

A note on the real densities of homogeneous systems in function fields

Xiaomei Zhao

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei, 430079, China

ARTICLE INFO

Article history:

Received 19 November 2012 Received in revised form 13 September 2013

Accepted 16 September 2013 Available online 9 October 2013 Communicated by Igor Shparlinski

MSC:

11D45

11D88

11P55

11T55

Keywords:

The real density Singular integral

Function fields

ABSTRACT

Let $\mathbb{F}_q((1/t))$ denote the field of formal power series in 1/t over the finite field \mathbb{F}_q of q elements. In this paper, we prove the existence of the real densities of certain homogeneous systems in $\mathbb{F}_q((1/t))$. In addition, we show that the real density of a system is equal to the corresponding singular integral.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Local densities play significant roles in asymptotic formulas for many Diophantine problems. Let $\mathbb{N} = \{0, 1, 2, \ldots\}$. For $k, s \in \mathbb{N} \setminus \{0\}$ and nonzero integers a_{ij} with $1 \le i \le k$ and $1 \le j \le s$, we write $\mathbf{x} = (x_1, \ldots, x_s)$ and

$$\phi_i(\mathbf{x}) = a_{i1}x_1^i + \dots + a_{is}x_s^i \quad (1 \leqslant i \leqslant k). \tag{1}$$

For $B \in \mathbb{N} \setminus \{0\}$, define N(B) to be the number of integral solutions of the Diophantine system $\phi_i(\mathbf{x}) = 0$ $(1 \le i \le k)$ with $|x_j| \le B$ $(1 \le j \le s)$. A result of Wooley [12, Theorem 9.1] states that when $k \ge 3$ and $s \ge 2k^2 + 2k + 1$, subject to certain local solubility conditions, one has

$$N(B) \sim C_{s,k} a B^{s-\frac{1}{2}k(k+1)}$$

where $C_{s,k,\mathbf{a}}$ is a positive constant. In particular, this constant can be factored as a product of the local densities associated with the above system defined as in Schmidt [10] and Wooley [12]. When L > 0, for $v \in \mathbb{R}$, define

$$\lambda_L(\nu) = \begin{cases} L(1 - L|\nu|), & \text{when } |\nu| \leqslant L^{-1}, \\ 0, & \text{otherwise.} \end{cases}$$

The limit

$$\mu(\infty) = \lim_{L \to \infty} \int_{[-1,1]^s} \prod_{i=1}^k \lambda_L(\phi_i(\mathbf{u})) d\mathbf{u}, \tag{2}$$

when it exists, is called the *real density*. Meanwhile, given $l \in \mathbb{N} \setminus \{0\}$ and a prime number p, we write

$$v_l = p^{l(k-s)} \operatorname{card} \{ \mathbf{x} \in (\mathbb{Z}/p^l \mathbb{Z})^s \mid \phi_i(\mathbf{x}) \equiv 0 \pmod{p^l} \ (1 \leqslant i \leqslant k) \}.$$

The limit $v(p) = \lim_{l \to \infty} v_l$, when it exists, is called the *p-adic density*. We see from [12, Theorem 9.1] that

$$C_{s,k,a} = \mu(\infty) \left(\prod_{p} \nu(p) \right) \tag{3}$$

where the product is over all prime numbers. In addition, on writing $\mathbf{\gamma} = (\gamma_1, \dots, \gamma_s)$ and $\mathbf{\beta} = (\beta_1, \dots, \beta_k)$, we see from Schmidt [10, Section 3] that the real density is exactly the singular integral

$$\mu(\infty) = \int_{\mathbb{R}^k} \int_{[-1,1]^s} e(\beta_1 \phi_1(\boldsymbol{\gamma}) + \dots + \beta_k \phi_k(\boldsymbol{\gamma})) d\boldsymbol{\gamma} d\boldsymbol{\beta}$$

where $e(z) = e^{2\pi i z}$ for $z \in \mathbb{C}$. Such asymptotic relations can be generalized to multiple Diophantine problems (for more details, see [9, Theorem 1.4]).

Note that the absolute value $|\cdot|$ is an archimedean valuation on the ring of integers \mathbb{Z} . As in $[1, \operatorname{Introduction}]$, we may interpret the real density $\mu(\infty)$ as the area of the manifold defined by (1) in the box $[-1,1]^s$. Let $\mathbb{F}_q[t]$ be the ring of polynomials over the finite field \mathbb{F}_q of q elements. We may also define a valuation $\langle \cdot \rangle$ on $\mathbb{F}_q[t]$ by $\langle x \rangle = q^{\deg x}$. However, this valuation is non-archimedean and such a metric cannot define a manifold. We are therefore interested in the real density of Diophantine systems over $\mathbb{F}_q[t]$. To begin with, we now set up the field \mathbb{K}_∞ , the completion of the fraction field of $\mathbb{F}_q[t]$ with respect to $\langle \cdot \rangle$. Indeed, \mathbb{K}_∞ is equal to $\mathbb{F}_q((1/t))$, the field of formal power series in 1/t over \mathbb{F}_q . Thus, each element $\alpha \in \mathbb{K}_\infty$ can be written in the shape $\alpha = \sum_{i \leqslant n} a_i t^i$ for some $n \in \mathbb{Z}$ and coefficients $a_i = a_i(\alpha) \in \mathbb{F}_q$ ($i \leqslant n$). We define ord α to be the largest integer i for which $a_i(\alpha) \neq 0$ and write $\langle \alpha \rangle = q^{\operatorname{ord} \alpha}$. In this context, we adopt the convention that $\operatorname{ord} 0 = -\infty$ and $\langle 0 \rangle = 0$. Let $\mathbb{T} = \{\alpha \in \mathbb{K}_\infty \mid \langle \alpha \rangle < 1\}$. We may normalize any Haar measure $d\alpha$ on \mathbb{K}_∞ in such a manner that $\int_{\mathbb{T}} 1 \, d\alpha = 1$.

Download English Version:

https://daneshyari.com/en/article/4582950

Download Persian Version:

https://daneshyari.com/article/4582950

<u>Daneshyari.com</u>