

Contents lists available at ScienceDirect

## Finite Fields and Their Applications



www.elsevier.com/locate/ffa

## Standard sequence subgroups in finite fields \*

### Owen J. Brison<sup>a,\*</sup>, J. Eurico Nogueira<sup>b</sup>

<sup>a</sup> Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Bloco C6, Piso 2, Campo Grande, 1749-016 Lisboa, Portugal

<sup>b</sup> Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825-114 Monte da Caparica, Portugal

#### ARTICLE INFO

Article history: Received 13 May 2013 Received in revised form 13 October 2013 Accepted 21 October 2013 Available online 15 November 2013 Communicated by Gary L. Mullen

MSC: 11B39 12E20

Keywords: Linear recurrence relation Finite field Standard subgroup Restricted period

#### ABSTRACT

In previous work, the authors describe certain configurations which give rise to standard and to non-standard subgroups for linear recurrences of order k = 2, while in subsequent work, a number of families of non-standard subgroups for recurrences of order  $k \ge 2$  are described. Here we exhibit two infinite families of standard groups for  $k \ge 2$ .

© 2013 Elsevier Inc. All rights reserved.

#### 1. Introduction

In what follows, p will always denote a prime, q a power of p,  $\mathbb{F}_q$  the field of order q and  $\mathbb{A}_q$  a fixed algebraic closure of  $\mathbb{F}_q$ . We will assume that all our finite extensions of  $\mathbb{F}_q$  are subfields of  $\mathbb{A}_q$ . Further, k will be a positive integer and  $\mathbb{N}$  will denote the set of all positive integers.

\* Corresponding author.

 $<sup>^{*}</sup>$  This research was partially supported by the Fundação de Ciência e Tecnologia, and was undertaken within the "Centro de Estruturas Lineares e Combinatórias da Universidade de Lisboa".

E-mail addresses: ojbrison@fc.ul.pt (O.J. Brison), jen@fct.unl.pt (J.E. Nogueira).

<sup>1071-5797/\$ –</sup> see front matter  $\,\,\odot$  2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.ffa.2013.10.009

Definition 1.1. Let

 $f(t) = t^k - f_{k-1}t^{k-1} - \dots - f_1t - f_0 \in \mathbb{F}_q[t]$ 

where  $f(0) \neq 0$ .

(a) An *f*-sequence in  $\mathbb{A}_q$  is a (doubly-infinite) sequence  $S = (s_i)_{i \in \mathbb{Z}}$  of elements  $s_i \in \mathbb{A}_q$  such that

$$s_i = f_{k-1}s_{i-1} + \dots + f_1s_{i-k+1} + f_0s_{i-k}$$

for all  $i \in \mathbb{Z}$ .

(b) An *f*-subgroup is a finite subgroup  $M \leq \mathbb{L}^*$ , where  $\mathbb{L} \subseteq \mathbb{A}_q$  is a finite extension of  $\mathbb{F}_q$ , such that M may be written as (the underlying set of a minimal periodic segment of) a periodic *f*-sequence

$$(\cdots, m_0 = 1, m_1, \dots, m_{|M|-1}, \dots)$$

of least period |M|, where |M| denotes the order of M. In this situation we say that the f-sequence  $(m_i)_{i \in \mathbb{Z}}$  represents M as an f-subgroup.

(c) The *f*-sequence  $S = (s_i)_{i \in \mathbb{Z}}$  in  $\mathbb{A}_q^*$  is called *cyclic* if there exists  $\lambda \in \mathbb{A}_q^*$  such that  $s_{i+1} = \lambda s_i$  for all  $i \in \mathbb{Z}$ ; in this situation,  $\lambda$  will be called the *common ratio* of *S*.

(d) The *unit f*-sequence,  $\mathcal{U} = (u_n)_{n \in \mathbb{Z}}$ , is the *f*-sequence in  $\mathbb{F}_q$  defined by  $u_0 = \cdots = u_{k-2} = 0$ ,  $u_{k-1} = 1$  if k > 1; when k = 1 the unit *f*-sequence will be the *f*-sequence defined by  $u_0 = 1$ .

(e) The *restricted period*,  $\delta(f)$  of f, is defined to be 1 if k = 1 and is the least integer n > 0 with  $u_n = \cdots = u_{n+k-2} = 0$  if k > 1 (see [3]).

In (a) it is known (because  $f(0) \neq 0$ ) that an f-sequence must be periodic: see 8.11 of [8]. In (e), it is clear that if k > 1 then  $\delta(f) \ge k$ .

The following lemma relates *f*-subgroups with cyclic *f*-sequences.

**Lemma 1.2.** Suppose that  $f(t) \in \mathbb{F}_q[t]$  is monic of degree k with  $f(0) \neq 0$ .

(a) Suppose that *S* is a non-null cyclic *f*-sequence in  $\mathbb{A}_q^*$  with common ratio  $\lambda \neq 0$ . If *S* contains 1 then *S* represents  $\langle \lambda \rangle \leq \mathbb{A}^*$  as an *f*-subgroup and  $f(\lambda) = 0$ .

(b) Let *M* be an *f*-subgroup. Then *M* is a cyclic group. If *S* is a cyclic *f*-sequence which represents *M* then the common ratio  $\lambda$  of *S* satisfies  $M = \langle \lambda \rangle$  and  $f(\lambda) = 0$ .

(c) Suppose  $M \leq A_q^*$  is finite. Suppose  $M = \langle \lambda \rangle$  and let m(t) be the minimum polynomial of  $\lambda$  over  $\mathbb{F}_q$ . Then M is an m-group and also an f-group for any multiple f(t) of m(t) in  $\mathbb{F}_q[t]$ .

**Proof.** For (a) and (b), see Lemma 1.3 of [5]. Note that in (a), *S* is periodic because  $f(0) \neq 0$  and so  $\lambda$  has finite multiplicative order, while in (b) a finite subgroup of the multiplicative group of a field is always cyclic: see Exercise 2.9 in [8].

(c) It is clear that  $\{1, \lambda, ...\}$  exhibits  $M = \langle \lambda \rangle$  as an *m*-sequence; then by Theorem 8.42 of [8], *M* is an *f*-subgroup for any multiple f(t) of m(t) in  $\mathbb{F}_q[t]$ .  $\Box$ 

The motivation for studying *f*-subgroups seems to go back to Somer [9,10]. In particular, if  $\omega \in \mathbb{A}_q^*$  is a root of  $f(t) \in \mathbb{F}_q[t]$  then  $\langle \omega \rangle \leq \mathbb{A}_q^*$  may be regarded as (the underlying set of) an *f*-sequence of minimal period  $|\omega|$ :

$$\langle \omega \rangle = (\cdots, 1, \omega, \omega^2, \dots, \omega^{|\omega|-1}, \dots).$$

It can sometimes happen, for certain choices of  $\mathbb{F}_q$ , f(t) and  $\omega$  with  $f(\omega) = 0$ , that the subgroup  $\langle \omega \rangle$  may be represented in an alternative, "less obvious", manner as an *f*-sequence; this leads to the following definition:

Download English Version:

# https://daneshyari.com/en/article/4582959

Download Persian Version:

https://daneshyari.com/article/4582959

Daneshyari.com