
The Journal of Systems and Software 112 (2016) 78–95

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

An automatic process for weaving functional quality attributes using a

software product line approach

Jose-Miguel Horcas∗, Mónica Pinto, Lidia Fuentes

CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain

a r t i c l e i n f o

Article history:

Received 7 May 2015

Revised 28 September 2015

Accepted 3 November 2015

Keywords:

Quality attributes

Software product lines

Weaving

a b s t r a c t

Some quality attributes can be modelled using software components, and are normally known as Functional

Quality Attributes (FQAs). Applications may require different FQAs, and each FQA (e.g., security) can be com-

posed of many concerns (e.g., access control or authentication). They normally have dependencies between

them and crosscut the system architecture. The goal of the work presented here is to provide the means for

software architects to focus only on application functionality, without having to worry about FQAs. The idea is

to model FQAs separately from application functionality following a Software Product Line (SPL) approach. By

combining SPL and aspect-oriented mechanisms, we will define a generic process to model and automatically

inject FQAs into the application without breaking the base architecture. We will provide and compare two

implementations of our generic approach using different variability and architecture description languages:

(i) feature models and an aspect-oriented architecture description language; and (ii) the Common Variability

Language (CVL) and a MOF-compliant language (e.g., UML). We also discuss the benefits and limitations of

our approach. Modelling FQAs separately from the base application has many advantages (e.g., reusability,

less coupled components, high cohesive architectures).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The quality of a software system is measured by the extent to

which it possesses a desired combination of quality attributes (QAs)

(Barbacci, et al., 19950) such as usability, confidentiality, reliability,

security or scalability. Some quality attributes (QAs) can be modelled

using software components and are normally known as functional

quality attributes (FQAs) (Juristo et al., 2007). Examples of FQAs are

security (e.g., to allow access control), usability (e.g., to provide con-

textual help) or error handling (e.g., to respond to the occurrence of

errors and exceptions). Note that other QAs (i.e., those related to non-

functional requirements) such as cost, efficiency or portability cannot

be directly mapped to functional software components, but they can

be mapped to architectural or implementation decisions, so they are

beyond the scope of this paper.

In order to satisfy application requirements, apart from core

functional and non-functional requirements, the software architect

should pay special attention to those that can be modelled as FQAs.

FQAs are characterised by the following aspects: (1) they are recur-

rent — i.e., FQAs are normally required by several applications (e.g.,

∗ Corresponding author. Tel.: +34625257121.

E-mail addresses: horcas@lcc.uma.es, migueli_jordan@hotmail.com (J.-M. Horcas),

pinto@lcc.uma.es (M. Pinto), lff@lcc.uma.es (L. Fuentes).

security); (2) most FQAs crosscut the system architecture; and (3)

they require the incorporation of specialised components inside the

architecture (e.g., an authorisation mechanism to satisfy the security

FQA). Normally, FQAs are modelled and tailored to a given applica-

tion, with functional components that are part of the core architec-

ture. But, modelling FQAs separately from the base application has

many advantages (e.g., reusability improvement, less coupled archi-

tectures, etc.). For instance, an encryption algorithm used to encrypt

the information to ensure confidentiality does not depend on the ap-

plication that needs it.

Modelling FQAs is a complex task, firstly because they are usually

composed of many concerns. The security FQA, for example, is com-

posed of confidentiality, integrity, access control and authentication,

among others. Secondly, different applications may require different

levels of an FQA (e.g., different security levels). For example, a specific

application may require access control, encryption, and anonymity

while another may require only encryption, or may require a dif-

ferent kind of encryption algorithm. Thirdly, some of the concerns

of an FQA may have dependencies between them. For example, the

confidentiality concern depends on the encryption concern to ensure

that all the information is encrypted and cannot be obtained by third

persons. Furthermore, some FQAs affect each other, so dependency

relationships between different FQAs must also be considered. For

instance, the contextual help concern of the usability FQA depends

on the authentication concern of the security FQA to be able to offer

http://dx.doi.org/10.1016/j.jss.2015.11.005

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.11.005&domain=pdf
mailto:horcas@lcc.uma.es
mailto:migueli_jordan@hotmail.com
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
http://dx.doi.org/10.1016/j.jss.2015.11.005


J.-M. Horcas et al. / The Journal of Systems and Software 112 (2016) 78–95 79

customised help based on the user’s previous experience with a given

application.

To summarise, there is much variability in FQAs and different de-

pendency levels. Therefore, specifying the set of FQA components and

connections that fulfil the application requirements is not a trivial

task for the software architect. Our goal is to alleviate the software

architect’s tasks with respect to FQAs by: (i) defining a family of FQAs

with commonalities, variabilities and dependencies; and (ii) imple-

menting a process able to automatically generate the final application

architecture that includes the customised FQAs.

The variability of FQAs can be modelled by using different tech-

niques provided by traditional Software Product Line (SPL) (Pohl

et al., 2005) approaches. Reviewing the literature, the conclusion can

be drawn that little care is taken to model variability of the func-

tional part of QAs (Etxeberria et al., 2008), and normally the focus is

on modelling the functional variability of the application. Some ap-

proaches propose techniques for analysing and/or reasoning about

the impact of functional variants on the quality of applications de-

rived from an SPL, principally concentrating on non-functional QAs

such as performance, availability, cost, or latency (Benavides et al.,

2005; González-Baixauli et al., 2004; Sinnema et al., 2006). Others

address FQAs variability (e.g., QADA Matinlassi et al., 2002, RiPLE-DE

Cavalcanti et al., 2011), but they model these FQAs intermingled with

the functional components, as part of the domain analysis of an SPL,

and not separately as we propose. The main drawback of these latter

approaches is that they do not provide means to easily reuse FQAs

and their dependencies across several applications, nor do they facil-

itate the customisation of FQAs to each individual application.

In order to define a family of FQAs following a generic SPL ap-

proach, we need a language to specify and model the variability

of FQAs. According to Czarnecki et al. (2012) Feature Models (FMs)

are the most used variability language, which model variability by

means of high-level features that are close to requirements specifica-

tion. More recently, the Common Variability Language (CVL Haugen

et al., 2012) was proposed as a standard. Both alternatives are cur-

rently well accepted by the SPL community, and can be used in our

approach.

Independently of the variability language used, once an architec-

tural configuration of the FQAs has been generated, a process to incor-

porate it into the architecture of the base application non-intrusively,

is required. For weaving FQAs with the base application we will use

some aspect-oriented mechanisms. By combining SPL and aspect-

oriented software development (AOSD) technologies, we have de-

fined a generic process to: (i) specify and model the variability and

dependencies among FQAs, defining a reusable family of FQAs; (ii)

customise the FQAs to fulfil the application requirements and auto-

matically generate an architectural configuration of FQAs; and (iii)

weave the customised FQAs into the software architecture of the base

application without manually modifying it. We present and compare

two instantiations of our generic process using different variability

languages and architecture description languages: (1) with feature

models and AO-ADL, an aspect-oriented architecture description lan-

guage (Lence et al., 2011; Horcas et al., 2013); and (2) using the Com-

mon Variability Language (CVL) and a MOF-compliant language such

as UML (Horcas et al., 2014). We illustrate our approach with an e-

voting case study and quantitatively evaluate both approaches by us-

ing suitable metrics (degree of dependency, variability, automation,

separation of concerns) to assess the benefits of each approach. Also,

we discuss the benefits and disadvantages of both implementations

of our approach.

The remainder of the paper is organised as follows: Section 2

presents the challenges addresed in this work and motivates it with

a case study. Section 3 overviews our approach. In Section 4 we ex-

plain in detail how we model FQAs with two different instantiations

of our approach. The customisation and incorporation of the FQAs

into the base application of our case study is explained in Sections 5

and 6, respectively. In Section 7 we evaluate our approach, while in

Section 8 we identify and discusses the benefits and limitations of

our approach. Section 9 discusses the related work. Finally, Section 10

concludes the paper.

2. Motivation and challenges

In this section we present the specific challenges addressed in this

work and the motivating case study we use to illustrate our approach.

2.1. Challenges

In this section we describe the specific challenges addressed in

our work related to FQA modelling and the weaving of a tailored FQA

configuration into different applications.

Challenge 1. Manage the variability of FQAs and their customi-

sation according to the application requirements. The issue of the

high degree of variability in FQAs has been neglected or even ignored

by most software architects as attention has mainly focused on func-

tional variability (Cavalcanti et al., 2011). The challenge is to model

all the possible FQA variation points independently of the final ap-

plication, which is not a trivial task. In this paper we define a family

of FQAs, following an SPL approach, that supports the customisation of

FQAs to satisfy the specific requirements of each application. We provide

a process that configures FQA variation points in such a way that variable

concerns that are not required by the base application are not incorpo-

rated into the final application. In this paper we explore the use of both

FM and CVL languages to specify a family of reusable FQAs.

Challenge 2. Manage dependencies between FQAs. In FQA mod-

elling, dependencies between concerns that are part of the same FQA

need to be taken into account, — i.e., intraFQA-dependencies. Further-

more, dependency relationships between different FQAs must also be

considered, — i.e., interFQA-dependencies. These kinds of dependen-

cies often go unnoticed by software architects, who are not domain

experts in modelling all types of FQAs. Using the support provided by

the SPL approach these dependencies are automatically traced and in-

corporated into the solution even if they have not been explicitly selected

by the software architect. For example, if a concern X depends on other

concerns Y, W and Z, then these other concerns should be automatically

incorporated into the solution even if they have not been explicitly se-

lected by the software architect.

Challenge 3. Define architectural patterns with reusable FQAs.

Once the FQAs have been modelled as independently as possible, the

customised FQAs need to be woven with the final application. The

challenge here is to define a process that systematically integrates

high-level quality solutions into the base architecture of a given ap-

plication, but without having to either understand the inner working

of the quality solutions, or break the application’s core architecture,

— i.e., architecture components should be completely unaware of the

FQAs they are affected by. This is not a straightforward task since each

FQA needs to be woven at different points of the base applications.

Moreover, multiple views may be required to appropriately model

the FQAs (e.g., behavioural view, structural view), and this makes the

weaving process even more complex. As part of our work we define dif-

ferent architectural weaving patterns, following the non-invasive weav-

ing mechanism of aspect-orientation. For this we follow two different ap-

proaches: (i) use connector templates defined by the AO-ADL language;

and (ii) use CVL and implement the corresponding model transforma-

tions.

Challenge 4. Support the approach with tools. The approach

presented in this paper is not viable without the required tool sup-

port. In our approach we combine several tools for SPL and AOSD in or-

der to completely automate the process of: (1) generating customised

software architectures for the FQAs required by an application, and (2)

weaving these software architectures with the software architecture of

the core functionality of the application.



Download English Version:

https://daneshyari.com/en/article/458339

Download Persian Version:

https://daneshyari.com/article/458339

Daneshyari.com

https://daneshyari.com/en/article/458339
https://daneshyari.com/article/458339
https://daneshyari.com

