
The Journal of Systems and Software 112 (2016) 96–109

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Performance optimization for state machine replication based on

application semantics: A review

Wenbing Zhao∗

Department of Electrical Engineering and Computer Science, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA

a r t i c l e i n f o

Article history:

Received 21 July 2015

Revised 2 November 2015

Accepted 3 November 2015

Available online 12 November 2015

Keywords:

Application semantics

State machine replication

Fault tolerance

Byzantine agreement

a b s t r a c t

The pervasiveness of cloud-based services has significantly increased the demand for highly dependable sys-

tems. State machine replication is a powerful way of constructing highly dependable systems. However, state

machine replication requires replicas to run deterministically and to process requests sequentially according

to a total order. In this article, we review various techniques that have been used to engineer fault tolerance

systems for better performance. Common to most such techniques is the customization of fault tolerance

mechanisms based on the application semantics. By incorporating application semantics into fault tolerance

design, we could enable concurrent processing of requests, reduce the frequency of distributed agreement

operations, and control application nondeterminism. We start this review by making a case for considering

application semantics for state machine replication. We then present a classification of various approaches

to enhancing the performance of fault tolerance systems. This is followed by the description of various fault

tolerance mechanisms. We conclude this article by outlining potential future research in high performance

fault tolerance computing.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The pervasiveness of cloud-based services has significantly in-

creased the dependability expectations of many computer systems

not only from business partners, but also from many millions of end-

users. Such systems must be made resilient against various hardware

failures and possibly against cyber attacks as well. State machine

replication has shown to be an effective technique to help achieve this

goal (Zhao, 2014c). Highly efficient fault tolerance algorithms have

been developed to tolerate both crash faults and Byzantine faults, the

most seminal of which are Paxos (Lamport, 1998, 2001) and PBFT

(Castro and Liskov, 2002). However, state machine replication re-

quires replicas to run deterministically and to process requests se-

quentially according to a total order. We argue that these constraints

could impede the adoption of fault tolerance techniques in practice,

for example

• Practical systems often involve nondeterministic operations when

they execute clients’ requests, and states of the replicas could di-

verge if the application nondeterminism is not controlled.
• Executing requests at the replicated server sequentially according

to a total order often results in unacceptable low system through-

put and high end-to-end latency.

∗ Tel.: +12 165237480; fax: +12 166875405.

E-mail address: wenbing@ieee.org

To overcome these issues, the application semantics must be con-

sidered, as demonstrated by a large number of fault tolerance systems

(Burrows, 2006; Castro and Liskov, 2002; Chandra et al., 2007; Cowl-

ing et al., 2006; Kotla et al., 2009; Li et al., 2012; MacCormick et al.,

2004; Moraru et al., 2013; Zhao, 2009; Zhao et al., 2009). For example,

most of them have focused on building fault tolerant storage systems

such as file systems and database systems, where a lighter weight

mechanism is designed to handle read-only requests while update

requests are totally ordered. The identification of read-only requests

requires the knowledge of the application semantics of a particu-

lar application. In some systems, such as a networked file system

(NFS), some requests would trigger the access of the local physical

clock, which constitutes a nondeterministic operation. In Castro and

Liskov (2002), the application semantics of NFS was used to identify

this nondeterministic operation and to design a control mechanism

accordingly.

The need for incorporating application semantics is further show-

cased by recent works on fault tolerance systems designed to oper-

ate in wide-area networks (Li et al., 2012; Moraru et al., 2013). In Li

et al. (2012), a hybrid replica consistency model is used to reduce the

end-to-end latency and enhance the system throughput for wide-

area fault tolerance systems based on state machine replication. In

this hybrid model, commutative requests (referred to as Blue oper-

ations) are executed locally and the operations are asynchronously

disseminated to other replicas using an eventual consistency model.

On the other hand, a strong consistency model is used for requests

http://dx.doi.org/10.1016/j.jss.2015.11.006

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.11.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.11.006&domain=pdf
mailto:wenbing@ieee.org
http://dx.doi.org/10.1016/j.jss.2015.11.006


W. Zhao / The Journal of Systems and Software 112 (2016) 96–109 97

that have inter-dependencies (referred to as Red operations). Further-

more, some operations that are not directly commutative are con-

verted into commutative operations (the converted operations are

referred to as shadow operations) for even better performance. The

determination on whether or not two requests are commutative, and

the transformation of some pairs of requests into commutative re-

quests, all require the knowledge of application semantics.

In Moraru et al. (2013), a new variation of the Paxos consensus al-

gorithm, referred to as Egalitarian Paxos (or EPaxos), was proposed

for state machine replication. EPaxos requires every request to in-

dicate whether or not it is read-only, and to provide the set of re-

quests on which it depends for each update request. Total ordering

is needed for conflicting requests only and non-conflicting requests

are executed concurrently, thereby, significantly increasing the sys-

tem throughput. It is apparent that application semantics is essential

for EPaxos to work properly.

We start this review by elaborating why considering appli-

cation semantics for state machine replication is necessary. We

then propose a classification of various approaches to building

practical fault tolerance systems. This is followed by the descrip-

tion of the actual performance engineering mechanisms under

the classification framework. We conclude this article by outlin-

ing potential future research in high performance fault tolerance

computing.

This article is based on our previous work in attempting to classify

existing approaches to designing practical Byzantine fault tolerance

systems by incorporating application semantics. We are not aware

of other work that aims to provide a systematic review of this sub-

ject. In Zhao (2014c), we coined the term “application-aware Byzan-

tine fault tolerance” to refer to this line of work, and compiled known

research works roughly based on their complexity. In Zhao (2014b),

we proposed our first classification framework. In this article, we

have expanded the classification to include both conservative Byzan-

tine fault tolerance and optimistic Byzantine fault tolerance. Further-

more, we have widened the scope of the classification to include state

machine replication with both the crash fault and Byzantine fault

models.

The ultimate goal of our research is to provide a guideline on de-

signing high performance practical fault tolerance systems by iden-

tifying when a distributed agreement is needed, and on what opera-

tions. This is analogous to the challenge of building a secure system,

where one must know when and where to use security primitives,

such as encryption and digital signatures. We believe that it is time

to treat distributed agreement algorithms as basic building blocks for

dependable systems the same way as security primitives to secure

systems. The use of security primitives alone does not warrant a se-

cure system. Similarly, the use of distributed agreement in a naive

manner does not necessarily enhance the dependability of a system.

It is essential to know exactly when to use the tool and on what oper-

ations. This cannot be accomplished without considering application

semantics.

The contributions of this review include

• We present a strong argument that it is not practical to treat the

sever application as a black box when replicating it for fault tol-

erance and, that one cannot ignore the application semantics in

dependability design. In addition to performance overhead and

replica consistency issues, we identify scenarios when the repli-

cated system may deadlock if requests are executed sequentially.
• We propose a classification framework for various performance

engineering approaches to fault tolerance, together with the de-

scription of the mechanisms used in these approaches. They could

serve as a guideline on designing practical dependable systems.
• We outline potential future research directions that could reduce

the cost of application semantics discovery and the maintenance

of custom fault tolerance implementations.

2. Why application semantics matters

Fault tolerance algorithms designed for state machine replication

concern only the total ordering of requests to be delivered to the

replicated server replicas. Hence, such algorithms can be used by any

application as long as the replicated component acts deterministi-

cally as a state machine, i.e.,given the same request delivered in the

same total order, all replicas would go through the same state transi-

tions (if any), and produce exactly the same reply. However, this does

not mean that we should treat each application as a black box and

employ a fault tolerance algorithm as it is by totally ordering all re-

quests and executing them sequentially according to the total order.

In the following, we present three major motivations for exploiting

application semantics in fault tolerance.

2.1. Reduce runtime overhead

There are two main types of runtime overhead introduced by state

machine replication based fault tolerance algorithms

1. Communication and processing delays for each remote invoca-

tion due to the need for total ordering of requests, which would

impact the end-to-end latency.

2. The loss of concurrency degrees at the replicated server due to

the sequential execution of requests, which impacts the sys-

tem throughput (i.e.,how many requests can be handled by the

replicated server per unit of time).

By exploiting application semantics, we can introduce the follow-

ing optimizations:

• Reducing the end-to-end latency by not totally ordering all re-

quests. There is no need to totally order read-only requests

(i.e.,requests that do not modify the server state). In addition, for

some stateless session-oriented applications, source ordering of

requests may be sufficient (Chai and Zhao, 2013).
• Enabling concurrent processing at the server replicas for some

requests. Non-conflicting requests can be executed concurrently

(Kotla and Dahlin, 2004; Raykov et al., 2011). Doing source order-

ing alone for requests also increases the system throughput (Chai

and Zhao, 2013).
• Furthermore, deferred agreement for session-oriented applica-

tions (using one distributed agreement instance for a group of re-

quests typically at the end of the session), could further increase

the system throughput (Zhang et al., 2012).

2.2. Respect causality and avoid deadlocks

General purpose fault tolerance algorithms are designed for sim-

ple client-server applications where clients do not directly interact

with each other and send requests to the replicated server inde-

pendently. For multi-tiered applications with sophisticated interac-

tion patterns (Chai and Zhao, 2012b), the basic assumption for these

fault tolerance algorithms may no longer hold and hence, if used in

a straightforward manner, may lead to two problems: (1) causality

violation, when the total order imposed on two or more requests is

different from their causal order and, (2) deadlocks, when sequen-

tial execution of requests is imposed when concurrent processing

of some requests is mandatory according to the application design

(Zhao et al., 2005a). In these cases, application semantics must be

tapped to discover the causal ordering between requests and iden-

tify what requests must be delivered concurrently. Otherwise, the in-

tegrity and the availability of the system could be lost.

2.3. Control replica nondeterminism

State machine replication requires that replicas behave determin-

istically when processing requests. However, many applications are



Download English Version:

https://daneshyari.com/en/article/458340

Download Persian Version:

https://daneshyari.com/article/458340

Daneshyari.com

https://daneshyari.com/en/article/458340
https://daneshyari.com/article/458340
https://daneshyari.com

