
The Journal of Systems and Software 112 (2016) 110–121

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Efficient discovery of periodic-frequent patterns in very large databases

R. Uday Kiran a,b,∗, Masaru Kitsuregawa a,c, P. Krishna Reddy d

a The University of Tokyo, Japan
b National Institute of Information and Communications Technology, Japan
c National Institute of Informatics, Japan
d International Institute of Information Technology-Hyderabad, India

a r t i c l e i n f o

Article history:

Received 20 February 2015

Revised 12 August 2015

Accepted 26 October 2015

Available online 2 November 2015

Keywords:

Data mining

Knowledge discovery

Frequent patterns

a b s t r a c t

Periodic-frequent patterns (or itemsets) are an important class of regularities that exist in a transactional

database. Finding these patterns involves discovering all frequent patterns that satisfy the user-specified

maximum periodicity constraint. This constraint controls the maximum inter-arrival time of a pattern in

a database. The time complexity to measure periodicity of a pattern is O(n), where n represents the number

of timestamps at which the corresponding pattern has appeared in a database. As n usually represents a high

value in voluminous databases, determining the periodicity of every candidate pattern in the itemset lattice

makes the periodic-frequent pattern mining a computationally expensive process. This paper introduces a

novel approach to address this problem. Our approach determines the periodic interestingness of a pattern

by adopting greedy search. The basic idea of our approach is to discover all periodic-frequent patterns by

eliminating aperiodic patterns based on suboptimal solutions. The best and worst case time complexities

of our approach to determine the periodic interestingness of a frequent pattern are O(1) and O(n), respec-

tively. We introduce two pruning techniques and propose a pattern-growth algorithm to find these patterns

efficiently. Experimental results show that our algorithm is runtime efficient and highly scalable as well.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Frequent pattern (or itemset) mining is an important knowledge

discovery technique. It typically involves finding all patterns that are

occurring frequently in a transactional database. Frequent patterns

play a key role in discovering associations (Agrawal et al., 1993), cor-

relations (Brin et al., 1997; Omiecinski, 2003), episodes (Mannila,

1997), multi-dimensional patterns (Lent et al., 1997), diverse pat-

terns (Srivastava et al., 2011), emerging patterns (Dong and Li, 2009),

and so on. The popular adoption and successful industrial applica-

tion of frequent patterns has been hindered by a major obstacle: “fre-

quent pattern mining often generates too many patterns, and majority

of them may be found insignificant depending on application or user re-

quirements.” When confronted with this problem in real-world appli-

cations, researchers have tried to reduce the desired set by finding

user interest-based frequent patterns such as maximal frequent pat-

terns (Gouda and Zaki, 2001), demand driven patterns Wang et al.

∗ Corresponding author at: The University of Tokyo, Japan. Tel.: +810354526254.

E-mail addresses: uday.rage@gmail.com, uday_rage@tkl.iis.u-tokyo.ac.jp (R.U. Ki-

ran), kitsure@tkl.iis.u-tokyo.ac.jp (M. Kitsuregawa), pkreddy@iiit.ac.in (P.K. Reddy).

URL: http://researchweb.iiit.ac.in/˜uday_rage/index.html (R.U. Kiran),

http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html (M. Kitsure-

gawa), http://faculty.iiit.ac.in/˜pkreddy/index.html (P.K. Reddy)

(2005), utility patterns (Yao et al., 2004), constraint-based patterns

(Pei et al., 2004), diverse-frequent patterns (Swamy et al., 2014), top-

k patterns (Han et al., 2002) and periodic-frequent patterns (Tanbeer

et al., 2009). This paper focuses on efficient discovery of periodic-

frequent patterns.

An important criterion to assess the interestingness of a fre-

quent pattern is its temporal occurrences within a database. That

is, whether a frequent pattern is occurring periodically, irregularly,

or mostly at specific time intervals in a database. The class of fre-

quent patterns that are occurring periodically within a database are

known as periodic-frequent patterns. These patterns are ubiquitous

and play a key role in many applications such as finding co-occurring

genes in biological datasets (Zhang et al., 2007), improving perfor-

mance of recommender systems (Stormer, 2007), intrusion detection

in computer networks (Ma and Hellerstein, 2001) and discovering

events in Twitter (Kiran et al., 2015). A classic application to illustrate

the usefulness of these patterns is market-basket analysis. It analyzes

how regularly the set of items are being purchased by the customers.

An example of a periodic-frequent pattern is as follows:

{Bed, Pillow} [support = 10%, periodicity = 1 hour].

The above pattern says that 10% of customers have purchased the

items ‘Bed’ and ‘Pillow’ at least once in every hour. The basic model

of periodic-frequent patterns is as follows (Tanbeer et al., 2009):

http://dx.doi.org/10.1016/j.jss.2015.10.035

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.10.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.10.035&domain=pdf
mailto:uday.rage@gmail.com
mailto:uday_rage@tkl.iis.u-tokyo.ac.jp
mailto:kitsure@tkl.iis.u-tokyo.ac.jp
mailto:pkreddy@iiit.ac.in
http://researchweb.iiit.ac.in/~uday_rage/index.html
http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html
http://faculty.iiit.ac.in/~pkreddy/index.html
http://dx.doi.org/10.1016/j.jss.2015.10.035

R.U. Kiran et al. / The Journal of Systems and Software 112 (2016) 110–121 111

Table 1

Transactional database.

ts Items ts Items

1 ab 6 def

2 acdi 7 abi

3 cefj 8 cde

4 abfgh 9 abef

5 bcd 10 acg

Let I = {i1, i2, . . . , in}, 1 ≤ n, be the set of items. Let X ⊆ I be a pat-

tern (or an itemset). A pattern containing β number of items is called

a β-pattern. A transaction, trk = (tsk,Y), 1 ≤ k, is a tuple, where

tsk ∈ R represents the timestamp of Y pattern. For a transaction trk =
(tsk,Y), such that X⊆Y, it is said that X occurs in trk and such times-

tamp is denoted as tsX
k

. A transactional database TDB over I is a set of

transactions, TDB = {tr1, . . . , trm}, m = |TDB|, where |TDB| can be de-

fined as the number of transactions in TDB. Let T SX = {tsX
j
, . . . , tsX

k
},

j, k ∈ [1, m] and j ≤ k, be an ordered set of timestamps where X has

occurred in TDB. In this paper, we call this list of timestamps of X as

ts-list of X. The number of transactions containing X in TDB is defined

as the support of X and denoted as Sup(X). That is, Sup(X) = |T SX |.
Let tsX

q and tsX
r , j ≤ q < r ≤ k, be the two consecutive timestamps in

TSX. The time difference (or an inter-arrival time) between tsX
r and

tsX
q can be defined as a period of X, say pX

a . That is, pX
a = tsX

r − tsX
q .

Let PX = {pX
1 , pX

2 , . . . , pX
r } be the set of periods for pattern X. The peri-

odicity of X, denoted as Per(X) = maximum(pX
1
, pX

2
, . . . , pX

r). The pat-

tern X is a frequent pattern if Sup(X) ≥ minSup, where minSup refers

to the user-specified minimum support constraint. The frequent pat-

tern X is said to be periodic-frequent if Per(X) ≤ maxPer, where max-

Per refers to the user-specified maximum periodicity constraint. The

problem definition of periodic-frequent pattern mining involves dis-

covers all those patterns in TDB that satisfy the user-specified minSup

and maxPer constraints. Please note that both support and periodicity

of a pattern can be described in percentage of |TDB|.

Example 1. Consider the transactional database shown in Table 1.

This database contains 10 transactions. Therefore, |TDB| = 10. Each

transaction in this database is uniquely identifiable with a timestamp

(ts). The set of all items in TDB, i.e., I = {a, b, c, d, e, f, g, h, i, j}. The set

of items ‘a’ and ‘b’, i.e., {a, b} is a pattern. For brevity, we represent

this pattern as ‘ab’. This pattern contains two items. Therefore, it is a

2-pattern. The pattern ‘ab’ appears at the timestamps of 1, 4, 7 and 9.

Therefore, the list of timestamps containing ‘ab’ (or ts-list of ‘ab’) is

{1, 4, 7, 9}. In other words, T Sab = {1, 4, 7, 9}. The support of ‘ab’ is the

size of TSab. Therefore, Sup(ab) = |T Sab| = 4. The periods for this pat-

tern are: pab
1

= 1 (=1 − tsinitial), pab
2

= 3 (=4 − 1), pab
3

= 3 (=7 − 4),

pab
4

= 2 (=9 − 7) and pab
5

= 1 (=ts f inal − 9), where tsinitial = 0 rep-

resents the timestamp of initial transaction and ts f inal = |TDB| = 10

represents the timestamp of final transaction in the database. The pe-

riodicity of ab, i.e., Per(ab) = maximum(1, 3, 3, 2, 1) = 3. If the user-

defined minSup = 3, then ‘ab’ is a frequent pattern because Sup(ab)

≥ minSup. If the user-defined maxPer = 3, then the frequent pattern

‘ab’ is said to be a periodic-frequent pattern because Per(ab) ≤ max-

Per. The complete set of periodic-frequent patterns discovered from

Table 1 are shown in Table 2.

The space of items in a transactional database gives rise to an

itemset lattice. Fig. 1 shows the itemset lattice for the items ‘a’,

‘b’ and ‘c.’ This lattice is a conceptualization of search space while

finding the user interest-based patterns. Tanbeer et al. (2009) have

introduced a pattern-growth algorithm, called Periodic-Frequent

Pattern-growth (PFP-growth), to mine the periodic-frequent pat-

terns. This algorithm generates periodic-frequent patterns by ap-

plying depth-first search in the itemset lattice. From a singleton

Table 2

Periodic-frequent patterns discovered from

Table 1.

P Sup Per P Sup Per

a 6 3 f 4 3

b 5 3 ab 4 3

c 5 3 cd 3 3

d 4 3 ef 3 3

e 4 3

Fig. 1. Itemset lattice generated for the items ‘a, ’ ‘b’ and ‘c’.

periodic-frequent pattern i, successively larger periodic-frequent pat-

terns are discovered by adding one item at a time.

The measure, periodicity, plays a key role in periodic-frequent pat-

tern mining. This measure ensures that the anti-monotonic property

(see Property 1) of frequent patterns still holds for periodic-frequent

patterns. Measuring the periodicity of a pattern requires a complete

scan on its ts-list. As a result, the time complexity of finding periodic-

ity of a pattern is O(n), where n represents the number of timestamps

at which the corresponding pattern has appeared in a database.

As n typically represents a very large number in voluminous

databases, measuring the periodicity of every candidate pattern

in the huge itemset lattice makes the periodic-frequent pattern

mining a computationally expensive process or impracticable in

real-world applications.

Example 2. Let ‘xy’ be a frequent pattern in a very large transac-

tional database appearing randomly at the timestamps, say 5, 9, 20,

23, 27, 50 and so on. The existing state-of-the-art algorithms mea-

sure the periodicity of this pattern by performing a complete search

on its huge list of timestamps. In the next step, they determine ‘xy’ as

either periodic or aperiodic by comparing its periodicity against the

user-specified maxPrd. In other words, current approaches determine

the periodic interestingness of this pattern by performing a complete

search on its huge list of timestamps. This approach of determining

the periodic interestingness of every candidate pattern in the itemset

lattice makes the periodic-frequent pattern mining a computation-

ally expensive process.

Property 1 (Anti-monotonic property of periodic-frequent pat-

terns). For a pattern X, if Sup(X) ≥ minSup and Per(X) ≤ maxPer, then

∀Y ⊂ X and Y 	= ∅, Sup(Y) ≥ minSup and Per(X) ≤ maxPer.

Reducing the computational cost of periodic-frequent pattern

mining is a non-trivial and challenging task. The main reason is that

we cannot sacrifice any information pertaining to periodic-frequent

patterns in order to reduce the computational cost.

With this motivation, we propose an approach to reduce the

computational cost of finding the periodic-frequent patterns. Our ap-

proach determines the periodic interestingness of a pattern by adopt-

ing greedy search on its ts-list. The usage of greedy search achieves

two important tasks. First, reduces the need of complete search on

the ts-lists of aperiodically occurring patterns by identifying them

based on sub-optimal solution. Second, finds global optimal solution

(i.e., periodicity) for every periodic-frequent pattern. As a result,

our approach reduces the computational cost without missing any

Download English Version:

https://daneshyari.com/en/article/458341

Download Persian Version:

https://daneshyari.com/article/458341

Daneshyari.com

https://daneshyari.com/en/article/458341
https://daneshyari.com/article/458341
https://daneshyari.com

