
The Journal of Systems and Software 112 (2016) 137–155

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Consistent merging of model versions

Hoa Khanh Dam a,∗, Alexander Egyed b, Michael Winikoff c, Alexander Reder b,
Roberto E. Lopez-Herrejon b

a University of Wollongong, Australia
b Johannes Kepler University, Austria
c University of Otago, New Zealand

a r t i c l e i n f o

Article history:

Received 31 July 2014

Revised 23 April 2015

Accepted 17 June 2015

Available online 27 June 2015

Keywords:

Model merging

Inconsistency management

Model versioning

a b s t r a c t

While many engineering tasks can, and should be, manageable independently, it does place a great burden

on explicit collaboration needs—including the need for frequent and incremental merging of artifacts that

software engineers manipulate using these tools. State-of-the-art merging techniques are often limited to

textual artifacts (e.g., source code) and they are unable to discover and resolve complex merging issues be-

yond simple conflicts. This work focuses on the merging of models where we consider not only conflicts

but also arbitrary syntactic and semantic consistency issues. Consistent artifacts are merged fully automati-

cally and only inconsistent/conflicting artifacts are brought to the users’ attention, together with a systematic

proposal of how to resolve them. Our approach is neutral with regard to who made the changes and hence

reduces the bias caused by any individual engineer’s limited point of view. Our approach also applies to ar-

bitrary design or models, provided that they follow a well-defined metamodel with explicit constraints—the

norm nowadays. The extensive empirical evaluation suggests that our approach scales to practical settings.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Models have become central artifacts which are created and

used by software engineers. In a collaborative environment, which

is the dominant form of today’s software development, software

engineers concurrently and independently work on models which

subsequently need to be merged. A basic scenario is where multiple

software engineers work independently on a single model and, since

they do so separately on their respective workstations, different ver-

sions of that model may exist. These different versions then need to

be merged periodically to support collaboration and error detection

among these engineers. In another scenario, multiple versions of a

model may exist due to the concurrent evolution of product variants.

For example, a company may develop multiple related software

products, each undergoing constant evolution, to meet their respec-

tive, ever-changing user requirements and environmental changes.

Here, merging may be desired to consolidate different variants or

simply to facilitate reuse among the variants. There are many more

such scenarios where software engineers find themselves confronted

∗ Corresponding author. Tel.: +61 242214875.

E-mail addresses: hoa@uow.edu.au (H.K. Dam), alexander.egyed@jku.at (A. Egyed),

michael.winikoff@otago.ac.nz (M. Winikoff), alexander.reder@jku.at (A. Reder),

roberto.lopez@jku.at (R.E. Lopez-Herrejon).

URL: http://www.uow.edu.au/˜hoa/ (H.K. Dam), http://www.alexander-egyed.com

(A. Egyed), http://infosci.otago.ac.nz/michael-winikoff (M. Winikoff)

with concurrently evolving versions of architectural models (Chen

et al., 2004). All these scenarios pose the challenging need to merge

these different versions of models.

However, since models are complex, rich data structures of in-

terconnected elements, traditional text-based versioning techniques

and tools such as Git, Subversion, and CVS have not been success-

fully applied to model versioning (Brosch et al., 2012b). Without ad-

equate tool support, model merging may result in a syntactically

and/or semantically inconsistent merged version. Therefore, incon-

sistency management is of vital importance in model merging. How-

ever, state-of-the-art model merging techniques have only focused on

detecting inconsistencies in merging versions of models (e.g. Brosch

et al., 2012a; Sabetzadeh et al., 2008) and there has been very little

work in resolving such inconsistencies having arisen during model

merging.

This paper contributes a novel approach to model merging which

helps software engineers in combining versions of models that

are created and maintained separately. Our approach considers

arbitrary, user-definable consistency constraints and merges the

model versions fully automatically if they are consistent and free

of conflicts.1 The software engineers are notified only if there are

1 Two models are in conflict if a model element is changed differently in each of the

models, for instance if it is modified in one and deleted in another. The models are

inconsistent if desired constraints do not hold in the merged model.

http://dx.doi.org/10.1016/j.jss.2015.06.044

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.06.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.06.044&domain=pdf
mailto:hoa@uow.edu.au
mailto:alexander.egyed@jku.at
mailto:michael.winikoff@otago.ac.nz
mailto:alexander.reder@jku.at
mailto:roberto.lopez@jku.at
http://www.uow.edu.au/~hoa/
http://www.alexander-egyed.com
http://infosci.otago.ac.nz/michael-winikoff
http://dx.doi.org/10.1016/j.jss.2015.06.044


138 H.K. Dam et al. / The Journal of Systems and Software 112 (2016) 137–155

conflicts or inconsistencies. However, since inconsistencies are more

complex problems than simple conflicts, solving them becomes

harder. Repairing an inconsistency can have the side effect of creat-

ing a different inconsistency (“cascading”). Furthermore, the number

of alternative repairs increases exponentially with the complexity

of the consistency rule and the number of elements accessed (Reder

and Egyed, 2012). Previous work has shown that abstract repairs,

which merely identify the model elements that require repairing,

are reasonably localized and scalable to compute. On the other hand,

concrete repairs, which identify all possible ways of repairing a given

model element, are often infinitely large. For example, even if a repair

merely requires the change of a single state transition action, we must

consider that there are infinitely many ways of writing such actions.

And, unfortunately, effective model merging needs to explore this

apparently infinite space of concrete repairs for any inconsistency

caused—an apparently computationally infeasible endeavor.

This paper is a substantially extended and revised version of Dam

et al. (2014) in a number of aspects. We have improved and extended

our merging algorithm to include pruning (in the search) and cater-

ing for conflicting actions (Section 5). In addition, the new merging

algorithm utilizes the scope of a consistency constraint (Egyed, 2006)

in deriving candidate merged models. This approach offers an alter-

native to using the repair generation as in the previous version (Dam

et al., 2014). Another significant extension is the formal proof which

establishes the correctness of our approach (Section 6.1). The evalua-

tion was also extended to accommodate the new merging algorithm.

Sections 1 and 2 are also extended to better motivate and articulate

the model merging problem, while Section 7 is extended to provide a

more comprehensive review of the literature.

In this paper, we argue that the space of repairs for resolving in-

consistencies in model merging is constrained by the changes made

to the original model and thus it is practically feasible to explore

them—not only in considering concrete repairs (as opposed to ab-

stract repairs) but also in fixing a number of inconsistencies at

once (as opposed to individual inconsistencies). If there are conflicts

and/or inconsistencies among the artifacts to be merged, then clearly

a compromise between those artifacts is necessary. A repair in this

sense reflects a compromise. The constrained search space implies

that there are limited resolution opportunities, and our approach em-

ploys a fast, automated search technique to quickly gauge whether a

compromise is possible to solve the merging problem by taking some

(but not all) of the engineers’ changes. It is useful to automate this ini-

tial compromise to avoid bias. However, since merging may involve

tradeoffs where human judgment and communication are required,

our approach provides the software engineers with all feasible alter-

native compromises in order to help them make informed, consistent

merging decisions. The benefits of our approach are:

1. Artifacts are merged fully automatically if they are consistent and

conflict-free.

2. Inconsistencies and/or conflicts caused during the merging are in-

stantly recognized and reported to the engineer.

3. Even with inconsistencies, parts of artifacts are still merged auto-

matically if they are not involved in the inconsistencies.

4. Unbiased compromises for resolving the inconsistencies among

the engineers’ artifacts are computed automatically, to help the

engineers quickly assess the problem.

We believe that our approach is applicable to arbitrary modeling

languages and software engineering artifacts, as long as they follow

a well-defined metamodel with explicit constraints. Since today the

standard Unified Modeling Language (UML) is predominantly used

in the industry for representing software models (Malavolta et al.,

2013), we illustrate and validate our work mostly in the context of

UML models. Architectural description languages such as Architec-

ture Analysis and Design Language (AADL) (Feiler et al., 2006) have a

metamodel, and constraints such as “A process can only be a subcom-

Table 1

Example of consistency constraints.

C1 The name of a message must match an operation in the receiver’s class

(the operation may be inherited from a generalization).

C2 The sequence of incoming messages to an object in a sequence diagram

must match the allowed events in the state machine diagram

describing the behavior of the object’s class.

C3 Inheritance cannot include cycles.a

a Consistency constraints for UML are typically expressed in the standard Object

Constraint Language (OCL). For instance, constraint C3 is expressed in OCL as not

self.allParents() → includes(self) where self is the context element, i.e. the UML Class.

ponent of a system component” can be expressed upon the meta-

model. Temporal constraints modeling component interaction as

expressed in the AADL’s behavior annex may need special treatments

but our technique still can apply in general. We demonstrate that our

approach is correct and an empirical analysis of large, third-party,

industrial software models indicates its computational efficiency and

scalability in practice. We do not presume the original model (or

the versions) to be fully consistent, nor is there an expectation that

the final, merged model must be consistent. This approach can thus

be used at any level of maturity of the model – and hence at any stage

of the process – to support the collaborative merging of artifacts.

The structure of our paper is as follows. In the next section, we

will describe a typical scenario in which the key limitations of exist-

ing model merging techniques are highlighted. We then discuss how

inconsistencies occur in merging models in Section 3. Section 4 serves

to describe an architectural overview of our approach and its details

are provided in Section 5. We then prove the correctness of our ap-

proach and report a number of experiments to validate its scalability

in Section 6. Finally, we discuss related work in Section 7 before we

conclude and outline future work in Section 8.

2. Illustrative example

We describe here a typical example of classical model merging

where two software engineers, Alice and Bob, concurrently work on

developing a model for a software controlling a washing machine.

In this example, Alice and Bob use the Unified Modeling Language

(UML) which has extensively been used for representing the models

of software systems in recent years (Ivers et al., 2004; Lallchandani

and Mall, 2011; Malavolta et al., 2013). We however note that our

approach also applies to arbitrary models as long as they follow a

well-defined metamodel with explicit consistency constraints, which

is today’s norm. Such constraints specify the required syntactical

(e.g. well-formedness) and semantical consistency (e.g. coherence

between different views) for a model. Table 1 describes three typical

consistency constraints on how a UML sequence diagram relates to

class and state machine diagrams and the inheritance relationship

between classes in the class diagram. These three constraints are

taken from the literature (C1 and C2 from Egyed, 2006) and UML

specifications (C3).

Fig. 1 shows a UML fragment of the model which covers both

the structural view (a class diagram) and the behavioral views (a se-

quence diagram and a state diagram). Alice’s class diagram describes

three classes GUI, Control and Driver and their relationships: an as-

sociation (between GUI and Control) and a generalization (between

Control and Driver). The sequence diagram describe a typical scenario

of running the washing machine which involves the interaction be-

tween the instances of classes GUI and Control, whereas the state ma-

chine diagram shows the behavior of the controller of the washing

machine, i.e. class Control.

Let us now assume that both Alice and Bob check out the latest

version (i.e. the original version) from a common repository and be-

gin making their changes. Alice (see version 1 in Fig. 2) designs be-

havioral aspect of the new rinsing feature by adding message rinse



Download English Version:

https://daneshyari.com/en/article/458344

Download Persian Version:

https://daneshyari.com/article/458344

Daneshyari.com

https://daneshyari.com/en/article/458344
https://daneshyari.com/article/458344
https://daneshyari.com

