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Abstract

We study two kinds of orthogonal systems of polynomials over finite commutative rings
and get two fundamental results. Firstly, we obtain a necessary and sufficient condition for a
system of polynomials (over a fixed finite commutative ring R) to form a strong orthogonal
system. Secondly, for a pair (R, n) of a finite local ring R and an integer n > 1, we get an
easy criterion to check whether every weak permutation polynomial in n variables over R is
strong.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a finite commutative ring with identity. A polynomial in R[X] is called a
permutation polynomial if it induces a permutation of R. This notion has been gener-
alized to polynomials or polynomial systems in n > 1 variables in two different ways.
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See [7] for a comprehensive account of permutation polynomials and [8] for a survey.
The notion, regarded as weak permutation polynomial in this paper (also in [3]), is
called permutation polynomial in most references.

Definition. A map between two finite sets is said to be uniform if all fibers have the
same sizes. Let f1, . . . , fk be polynomials in n variables. Then they are said to form a
weak orthogonal system over R if they induce a uniform map from Rn to Rk . They are
said to form a strong orthogonal system if there exist polynomials fk+1, . . . , fn such
that the n polynomials f1, . . . , fn induce a permutation of Rn. Specially, it is called a
weak permutation polynomial or strong permutation polynomial if k = 1. If f1, . . . , fn

induce a permutation of Rn, we call (f1, . . . , fn) a permutation polynomial vector.

It is easy to see that f1, . . . , fk form a weak orthogonal system over R if and only
if there exist functions (may not be polynomial) fk+1, . . . , fn such that f1, . . . , fn

induce a permutation of Rn. One has the following basic facts:
(1) A strong orthogonal system is weak.
(2) Every weak orthogonal system over a finite field is strong (as every function

over a finite field is a polynomial function).
Fact (2) was first shown by Carlitz [2]. Frisch [3] characterized all R over which

every weak permutation polynomial is strong. Kaiser and Nöbauer [4] proved the special
case R = Z/mZ earlier. Since every finite commutative ring is a direct sum of several
finite local rings, we can consider only finite commutative local rings. From now on,
we make conventions without a special statement, as follows:

Let Fq denote a finite field with q elements. Let R denote a finite commutative local
ring with maximum ideal M. Let r denote the least number such that there exist r
elements to generate M. Moreover, we will abbreviate a polynomial f (X1, . . . , Xn)

to f (X), and denote by f ′(X), the column vector of polynomials
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For any x ∈ Rn, f (x) and f ′(x) have the natural meaning. For any ideal I of R and
two elements a = (a1, . . . , an), b = (b1, . . . , bn) in Rn, we say a ≡ b (mod I) if
ai ≡ bi (mod I) for all i. For an element � in R or R[X1, . . . , Xn], we always denote
by �, its reduction mod M.

Frisch’s result is, in nature, the following:
(3) If R is not a field and n > r , then there exist a weak permutation polynomial in

R[X1, . . . , Xn] which is not strong.
In this paper, we will prove that for n�r , all weak permutation polynomials

in R[X1, . . . , Xn] are strong. In some sense, it is easy to understand strong
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